Extracting a mobility model from real user traces

Minkyong Kim @ Dartmouth
David Kotz @ Dartmouth
Songkuk Kim @ Xerox

INFOCOM
April 26, 2006
Simulating user mobility

- Wireless-network usage is increasing
 - Mobile systems or applications need to be aware of people’s mobility
 - Not feasible to test in real environment
 - Thus, resort to simulations

- To simulate people’s movements
 - Trace-driven: limited parameter space
 - Model-based: no realistic models
Need a new mobility model

• Current models aren’t realistic
 ▸ Variation of random-walk models
 ▸ Based on intuition of designer

• Goal: Develop mobility model using real traces

• Mobility traces
 ▸ Physical mobility traces aren’t available
 ▸ Use network mobility traces: syslog
 ▸ Why syslog? Easy to collect, readily available
Syslog traces

- Dartmouth has campus-wide wireless network
 - Around 560 access points, on 1km² main campus
- Access points (APs) collect syslog traces
 - Record client events (associate, authenticate, ...)
 - Each entry: time stamp, AP, client, event type
- Two types of models can be developed
 - Model of AP-association patterns
 - Model of **physical mobility**

Our goal
Focus on always-on devices

- On-and-off devices
 - Laptops

- Always-on devices
 - Vocera communicators
 - Cisco VoIP phones

- Usage patterns are different
 - Not enough path information for laptops
 - Focus on **always-on devices**
Estimating physical location

- **Problem**: Syslogs don’t contain users’ physical location, only sequence of AP locations
- **Challenge**: How to estimate physical location?

Sample walk

User walked for 20 min, carrying GPS and Vocera
Estimating physical location

- Estimate physical location using filters
 - Centroid filters
 - **Triangle centroid**
 use three associations
 - **Time-based centroid**
 use associations within 60s
 - **Kalman filter**: estimate position given knowledge on system’s behavior and measurements with noise
- Kalman filter performed the best
Extracting pause time

- **Problem**: Syslogs have only association time stamps
- **Challenge**: Separate time into travel and pause
- For given distance, expected travel time is known
 - If elapsed time is longer than expected, user probably paused and then moved

Let $s = \text{distance/elapsed}$

- If $s < 0.5\text{m/s}$
 - user paused and then moved
- If s is in normal range $[0.5-10\text{m/s}]$
 - user didn’t pause
Evaluation method

- Four people walked, carrying GPS, Vocera, and Cisco phone
 - Each walk lasted 30 min with a 10 min pause
 - Four Vocera traces, four Cisco traces

Raw AP associations

Filtered user path

- Four people walked, carrying GPS, Vocera, and Cisco phone
 - Each walk lasted 30 min with a 10 min pause
 - Four Vocera traces, four Cisco traces
Evaluation result

Path extractor (Kalman filter)
Error computed every 30s per walk
Ground truth: GPS
Median error: 20m - 46m

Pause extractor
Error computed for a 600s pause
Ground truth: user recorded
Error: 3s - 71s
Network traces

- June 2003 - June 2004
- 198 always-on devices (existing users)
- To remove diurnal effects, considered 8am-6pm
- Divide workday traces based on
 - **Diameter**: maximum distance between any two APs visited by user during workday

<table>
<thead>
<tr>
<th>Set</th>
<th>Diameter</th>
<th>Workdays</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mobile</td>
<td>>= 100 m</td>
<td>3,252 (46%)</td>
</tr>
<tr>
<td>Stationary</td>
<td>< 100 m</td>
<td>3,876</td>
</tr>
</tbody>
</table>
Temporal characteristics

<table>
<thead>
<tr>
<th>Characteristic</th>
<th>Distribution</th>
<th>Mean</th>
<th>Median</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pause</td>
<td>log-normal</td>
<td>1,677s</td>
<td>163s</td>
</tr>
<tr>
<td>Speed</td>
<td>log-normal</td>
<td>1.65m/s</td>
<td>1.26m/s</td>
</tr>
<tr>
<td>Start time 08:00-</td>
<td>exponential</td>
<td>09:54</td>
<td>09:06</td>
</tr>
<tr>
<td>End time -18:00</td>
<td>exponential</td>
<td>16:30</td>
<td>17:06</td>
</tr>
</tbody>
</table>

Human walking speed: 3mile/h = 1.34m/s
Movement direction

- Histogram with 5° bin weighted by duration of movement

NS, EW are popular
Symmetry across 180°
Hotspots on campus map

- **Problem**: Estimated user location, with error
- **Challenge**: How to define popular regions?

1. Align the center of unit Gaussian with visit location
2. At each location, sum up Gaussian distributions
3. Regions above threshold considered as hotspots
Gaussian applied

Before cut
Gaussian applied

After cut

2 engineering

3 library

4 computer science

5 telephone services

1 restaurant
Mobility model

- Model describes how users move between regions
 - 5 hotspots, 1 coldspot, 1 offstate
- For each user
 - Insert a new user using start time distribution
 - Choose start location using initial region distribution
- For each movement
 - Choose destination region using transition probability matrix
 - Choose speed and pause from distribution
Model validation
Hourly visitors

[Graphs showing real and synthetic visitor data over hours 8 to 17]
Conclusion

• In this work, we found that...
 ‣ We can effectively extract physical paths from syslog traces using Kalman filter
 ‣ Commonly used mobility assumptions are incorrect
 ‣ Our model generates realistic movements

• In the future, we plan to work on...
 ‣ Time variation over a course of day
 ‣ Metric for mobility models
Thank you

For related papers and more info
http://www.cs.dartmouth.edu/~minkyong/

For traces used in this paper
http://crawdad.cs.dartmouth.edu/

Center for Mobile Computing
http://cmc.cs.dartmouth.edu/