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ABSTRACT
As enterprises migrate more and more mission critical workloads to
the cloud, the performance of a cloud computing system becomes
increasingly important. The traditional method of pre-copying vir-
tual machine images to hypervisors before VMs are booted results
in long provisioning delays. On-demand streaming of virtual disks
is used to speed up the provisioning but it may result in applica-
tion runtime performance penalty. This paper seeks to quantify the
runtime performance when using on-demand streaming through an
empirical study. We have studied three representative application
workloads: I/O micro-benchmarks, transactional application and
Big Data. Two streaming protocols, NFS and iSCSI, are used in
conjunction with two Copy-on-Write schemes, qcow2 from QEMU
and dm-snapshot from Linux Device Mapper. We have also investi-
gated the impact of page caching at hypervisor level on application
runtime performance. The results show that I/O micro-benchmarks
and transactional workload perform equally well with on-demand
streaming as with pre-copied local virtual disks, while Big Data
workload such as Hadoop sees a performance degradation up to
16%. We hope this study can provide insights into the performance
aspect of various streaming technologies and offer guidelines to
cloud operators and end users in implementing them.

Categories and Subject Descriptors
D.4.2 [Operating Systems]: Storage Management—Storage Hi-
erarchies; C.2.4 [Computer Communication Networks]: Dis-
tributed Systems—Distributed Applications

General Terms
Performance, Experimentation

Keywords
Cloud Computing, Virtualization, Virtual Machine, Virtual Disk,
Caching
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As cloud computing (and virtualization in general) continues to
gain wider adoption and more and more critical workloads are mi-
grated to the cloud, the performance of a cloud has become an in-
creasingly important aspect of consideration. In a typical cloud
computing system, virtual machine (VM) states are represented as
virtual disk files (also called images) that are stored in a storage
subsystem. When a new VM is requested, a target hypervisor is
chosen to host the guest VM, the corresponding virtual disk file
is copied from the storage system to the hypervisor’s local file sys-
tem, and then the virtual machine is booted up from the virtual disk.
In this typical scenario, the VM provisioning time consists of two
main components: the virtual disk copying time and the OS boot
time. Because the sizes of virtual disk files can be in the order of
gigabytes, in a large cloud computing system, the image copying
process can take up to minutes and results in slow provisioning.

Various methods and techniques have been proposed in the liter-
ature to speed up the image deployment process. One of the sim-
plest methods is to eliminate the copying altogether, but instead
to stream the virtual disks on-demand from the storage server to
the hypervisors. This can be achieved using a number of proto-
cols, such as Network File System (NFS) sharing and iSCSI. To
allow multiple guest VMs to share a common base virtual disk file,
Copy-on-Write (CoW) techniques are often implemented in con-
junction with streaming virtual disk. A relatively small file (or disk
volume) is allocated on the hypervisor, which stores any modified
content pages of the underlying read-only streaming virtual disk
file. On-demand streaming eliminates the time consumed to copy
image during VM provisioning. In a well designed system, guest
VMs can be provisioned at a rate of hundreds to thousands per hour,
and thus enabling the rapid deployment of bursty workloads.

Compared with a pre-copied virtual disk file residing on the hy-
pervisor’s local filesystem, CoW with on-demand streaming intro-
duces additional runtime overheads, which include the additional
level of indirection in locating a virtual disk block, the inevitable
fragmentation of the CoW file or volume, and additional network
access overhead. This can deter cloud operators from implement-
ing on-demand streaming virtual disks for the fear that the appli-
cation runtime performance may become unacceptable to the end
users. This paper seeks to quantify the application runtime perfor-
mance when using on-demand streaming virtual disks as compared
to pre-copied virtual disks, with the hope that the observations ob-
tained here can provide insights into the performance characteris-
tics of on-demand streaming and offer some guidelines and recom-
mendations to potential users of this technology.

To this end, we have conducted a performance study using three
representative application workloads—I/O micro-benchmarks, trans-
actional workload, and Big Data workload—on a cloud computing
test environment using on-demand streaming technology. Two net-
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Figure 1: Different configurations of virtual disks

work protocols, NFS and iSCSI, along with two CoW technologies,
qcow2 from QEMU and dm-snapshot from Linux Device Mapper,
were evaluated against the baseline configuration of pre-copied vir-
tual disk files. We also studied the impact of file system page
caching at the hypervisor level on application runtime performance.

The rest of the paper is organized as follows. Section 2 pro-
vides additional background information and related work. Sec-
tion 3 describes the methodology of our performance study. Sec-
tion 4 presents the results of the study. Section 5 offers concluding
remarks along with directions for future work.

2. BACKGROUND AND RELATED WORK
Infrastructure as a service (IaaS) cloud encapsulates user appli-

cations into virtual machines (VMs). The VMs are distributed on a
large number of compute nodes to share the physical infrastructure.
Virtualization enables many features such as consolidation for im-
proving resource efficiency, live migration for easier maintenance,
and so forth. The hard disk drive of a virtual machine (i.e., vir-
tual disk) is typically emulated with a regular file on the hypervisor
host (i.e., VM image file). I/O requests received at virtual disks are
translated by the virtualization driver to regular file I/O requests to
the image files.

A typical IaaS cloud, such as Amazon Elastic Compute Cloud
(EC2), has thousands of VM images [5]. Therefore, it is impossi-
ble to store all image files on every hypervisor host. To facilitate
VM image management, a shared storage system with a unified
name space, which we denote as "VM image repository", is typi-
cally adopted to expose VM images to all hypervisor hosts. One
commonly used architecture is to set up the shared storage system
on a separate cluster from the hypervisor hosts, and connect the
storage and hypervisor clusters via a storage area network. An-
other emerging scheme is to form a distributed storage system by
aggregating the locally attached disks of hypervisor hosts [6]. In ei-
ther scenario, when a VM is to be started on a hypervisor host, the
majority of its image data is likely to be located remotely. There-
fore, an interesting problem is how to configure the virtual disk for
each VM to access. Figure 1 illustrates different dimensions of this
configuration space.

In order to create a new VM instance in an IaaS cloud, a VM
image needs to be available at its hypervisor host. As illustrated
in Figure 1, one straightforward solution is to pre-copy the entire
image to the compute nodes before a new VM is started. If an
instance uses an image that the target hypervisor does not have, it
may take a long time to start up that instance. A typical VM image

file contains multiple gigabytes or even tens of gigabytes of data,
which leads to severe delays in a heavily loaded cloud environment.
Subsequent instances that use the same image on that host can start
up faster as the image is locally available.

An alternative method to address this issue is to transfer the im-
age data in an on-demand streaming fashion, where the parts of
an image are copied as needed from the shared storage system to
hypervisor hosts. This scheme is used by cloud operating environ-
ments such as IBM SmartCloud Provisioning (SCP) [8]. This on-
demand streaming approach avoids expensive network transfers of
entire image files and accelerates VM start up time. However, VM
runtime performance can be degraded, as blocks of data may need
to be fetched from the remote storage during runtime. In contrast,
all requests to the virtual disk are served locally with the pre-copy
approach.

In both the pre-copy and the on-demand streaming schemes, VM
images can be stored in different formats. The most straightforward
option is to use the raw format, where I/O requests to the virtual
disk are served via a simple block-to-block address mapping. In or-
der to support multiple VMs running on the same base image, copy-
on-write techniques have been widely used, where a local snapshot
is created for each VM to store all modified data blocks. The under-
lying image files remain unchanged until new images are captured.
As shown in Figure 1, there are different copy-on-write schemes,
including QEMU qcow2 [2], dm-snapshot [1], FVD [10], Virtual-
Box VDI [4], VMware VMDK [3], and so forth. In some schemes,
such as qcow2, a separate file is created to store all data blocks that
have been modified by the provisioned VM. Other schemes, such
as dm-snapshot, work at the device level, without going through the
operating system’s virtual file system (VFS) layer.

Another dimension of virtual disk access is the network protocol
between the storage server and compute nodes. A given cloud op-
erating environment may choose to support a subset of all available
protocols. For example, OpenStack supports the iSCSI and NFS
protocols.

Recently, there have been many efforts on benchmarking cloud.
However, most efforts focus on measuring public clouds such as
Amazon EC2. As these public clouds do not offer flexibility in sys-
tem configuration to the end users, one can only measure perfor-
mance of a cloud, treating it as a blackbox. He et al. [7] studied the
performance of high performance computing (HPC) applications
in a public cloud. Jackson et al. [9] also analyzed HPC applica-
tions in the Amazon EC2 cloud. Our paper is the first to analyze
the impact of different VM image formats and virtual disk storage
configurations on application runtime performance.

3. METHODOLOGY
To represent a typical mid-range enterprise-grade cloud comput-

ing/virtualization environment, we set up a dedicated server cluster
as our experiment testbed. We then configure the hypervisors to use
the various on-demand streaming virtual disks described in the pre-
vious section. Application workloads are executed on this testbed
using these virtual disk configurations.

3.1 Experiment Environment
Our experiment testbed, as shown in Figure 2, consists of four

(4) IBM x3650 M2 xSeries Intel servers. Each server has two Intel
Xeon X5570 quad-core processors clocked at 2.93 GHz (16 simul-
taneous threads can be executed with Hyperthreading), 32 GB of
main memory, five (5) 300GB hard disks configured in RAID-0
(striping) mode and four Gigabit Ethernet adapters (two are used
for guest workload traffic and the other two are used for manage-
ment plane traffic). Two servers are used as compute nodes. They
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Figure 2: Hardware setup for the performance study

run RedHat Enterprise Linux v6.1 with KVM hypervisor. The
other two are used for management and storage purposes and have
VMWare ESXi hypervisor installed.

Image storage is provided by an IBM DS4300 storage server.
The storage server is connected to the two VMWare servers via a
Fiber Channel storage area network switch running at 2 Gb/s. Two
storage VMs are created on the VMWare servers. Each is provided
with a 1 TB volume on the SAN device. In turn, they expose the
volumes to the KVM hypervisors using either iSCSI or NFS.

3.2 Streaming Virtual Disk Configurations
VM images used in our performance study are stored as image

files on the SAN volumes that are mounted on the two storage
nodes (#1 and #2). For NFS based streaming, we configure storage
node #1 to export the directory that contains the VM image files
using NFS. The two KVM hypervisors mount the NFS export and
thus have access to the remote image files. For iSCSI based stream-
ing, we export individual image files as iSCSI targets on storage
node #2. We then create iSCSI initiators on the two KVM hypervi-
sors. A Linux Device Mapper device is created as a result for each
iSCSI initiator, which corresponds to a remote VM image file.

In the most common configuration, data created by a guest VM is
not persisted across VM life spans. Such VMs are typically called
ephemeral. For this type of VMs, Copy-on-Write (CoW) is im-
plemented on top of shared, common streaming VM images. The
qcow2 CoW format from QEMU is used for its ubiquity and wide
adoption. The qemu-img utility is used to create the qcow2 for-
mat image file with the backing file being either an image file on the
NFS mount or an iSCSI device file. For dm-snapshot based CoW,
we use the Device Mapper dmsetup utility to create a snapshot
volume based on a base device, which is either a loop device cre-
ated from a remote NFS file or an iSCSI device directly.

Many cloud computing systems also support the notion of persis-
tent VM, where guest-generated data is kept across VM life spans.
In this case, the VM image file is first duplicated on the storage
server, and then the streaming VM images are used directly to boot
up the virtual machines.

To evaluate the effect of file system caching at the hypervisor1,
we explicitly specify the caching behavior in the libvirt virtual ma-
chine XML configuration file. By setting the cache attribute value
of the driver element to “none”, libvirt will open the image file (de-
vice) in O_DIRECTmode thus bypassing OS page caching. Setting
it to “write-through” tells libvirt to open the file in O_SYNC mode,
which enables file system page cache.
1referred to as “hypervisor caching” from now on for brevity

3.3 Application Workloads
We use three kinds of workloads to characterize the VM runtime

performance under different conditions: I/O micro-benchmarks,
transactional workload and Big Data workload.

I/O Micro-benchmarks. We use a benchmark tool called Micro-
benchmark controller (MBC) to execute a suite of disk I/O micro-
benchmarks. This is used to establish the baseline of the I/O per-
formance of the virtual disks using different streaming configura-
tions. The runtime performance of I/O intensive applications may
approach the benchmark result. MBC executes two main bench-
marks: DD and FFSB.

DD uses the Linux dd command to convert and copy a file, and
measures the I/O performance under the following scenarios: se-
quential read, same file write, create, and rewrite. For sequential
read, DD creates each file first in order to avoid caching effect and
then measures the read performance. For same file write, multiple
DD threads all write to the same file but to exclusive regions of
that file by using different offsets. For create, DD truncates the file
to zero to start from scratch and then measures file “create" per-
formance. For rewrite, DD overwrites the existing file. For each
operation, multiple threads are started simultaneously.

Flexible Filesystem Benchmark (FFSB) is a file system perfor-
mance measurement tool. It is a multi-threaded application. Our
set includes four different read/write patterns (large file create, se-
quential reads, random reads and random writes) and two differ-
ent workload patterns (mail server and DB2 random access). The
large file create operation creates 1 GB file with 4 KB block size.
The random read operation reads 20 MB from each of 1024 files,
20 MB per file with 5 MB read size. The random write operation
writes 20 MB to each of 1024 files with 5 MB write size. The se-
quential read operation reads 20 MB from each of 1024 files. Mail
server (ms) and DB2 random access perform both read and write.

We have run MBC with varying numbers of threads (1, 4, 8 and
16) and block sizes (4 KB, 8 KB, 16 KB, 32 KB, 128 KB and
256 KB). Due to the space limitation, we have included only the
results using 8 threads with the block size of 4 KB.

Transactional workload. Transactional applications represent
one of the most commonly deployed enterprise applications. A typ-
ical web application uses a multi-tier architecture, which includes
the Web (HTTP), application (e.g., JEE), persistence (database),
and possibly integration tiers. We have chosen DayTrader, an IBM
benchmark of three-tier transactional application simulating an on-
line trading web application. It consists of IBM DB2 as persistence,
IBM WebSphere Application Server (WAS) as application/web tier,
and an JEE application.

The DayTrader application and middleware stack are deployed
on a single large VM instance (2 vCPU, 4 GB memory, 10 GB
virtual disk). Client HTTP workload is generated using Apache
jmeter, which runs on a separate large VM instance (on a different
hypervisor). A variable number of jmeter threads are used to vary
the intensity of application workloads. Each thread issues 50,000
HTTP requests consecutively. Per DayTrader documentation, the
application is warmed up with 10 threads and 2000 requests for
each new test configuration so that we can measure the steady state
performance.

The following runtime performance metrics are collected: through-
put, average HTTP response time, and average CPU time per HTTP
request. Due to space limit, we will only present the throughput
numbers in the next section.

Big Data workload. Hadoop is a popular open source imple-
mentation of the MapReduce programming model. It is a data-
intensive distributed data processing application. A cluster of nodes
are used in the Hadoop experiment. The input data are distributed



among all nodes. Each node processes locally stored input data
and writes output to local storage. The sort program is used, which
is both read and write intensive. The input to sort is a randomly
generated 4 GB dataset, stored in Hadoop Distributed File System
(HDFS) with 3-way replication.

We have used 2 configurations: 8 and 16 Hadoop nodes in total.
(In either case, equal number of nodes are started on each of the
two compute hosts.) The performance metric for Hadoop is the job
completion time, which is the elapsed time for the system to finish
the sort task, assuming that data is already written to HDFS.

4. EXPERIMENT RESULTS
We have performed the aforementioned three application work-

loads in the test environment. The following subsections present
the detailed results for each application workload type.

4.1 Ephemeral Volumes
The first set of experiments were performed with the on-demand

streaming virtual disks configured in ephemeral mode.
I/O micro-benchmarks. Figures 3(a)-(d) show the results of

MBC using an ephemeral storage. We used 8 threads with the
block size of 4 KB. Each number represents the average value of 8
threads. The x-axis of DD shows four operations: sequential reads
(seq-reads), same-file-writes (same-writes), creates (creates) and
rewrites (rewrites). The x-axis of FFSB denotes eight operations:
db2 reads (db2R), db2 writes (db2W), large file writes (largeW),
mail server read (msR), mail server write (msW), random reads
(randR), random writes (randW) and sequential reads (seqR).

Figures 3(a) and (c) show the throughput, using only the ephemeral
storage on the VM instance, for DD and FFSB, respectively. Note
that our base case is the raw format image on the local storage. If
we compare the throughput of qcow2 to raw image, we find that
the performance is similar. Using either iSCSI or NFS protocol did
not make much difference for qcow2 images; we expect that this is
because the overhead of using qcow2, which is in the user mode,
becomes the bottleneck so that the overhead of NFS protocol com-
pare to iSCSI did not make difference in the overall throughput.

Compared to the raw format, dm-snapshot performed much bet-
ter in all cases, except create operation. On average across all the
operations of DD and FFSB, throughput increased by a factor of
12.5× with iSCSI and 9.4× with NFS. One of the reasons that the
raw format is much slower than dm-snapshot is because raw format
requires file I/O while dm-snapshot uses block device directly.

In case of create operation, the raw format performed slightly
better than dm-snapshot because create is meta-data operation and
is not I/O intensive. In order to create a file, some blocks from the
base image need to be read first and thus having the VM image on
the local storage (raw+local) helps the create performance.

Since qcow2 performed similar to raw format, the performance
improvement of dm-snapshot over qcow2 is similar to over raw
format. This performance improvement comes from that fact that
dm-snapshot runs in kernel mode, while qcow2 runs in user mode.

Figures 3(b) and (d) show the impact of enabling caching of
VM’s CoW file on the performance of DD and FFSB, respectively.
In case of qcow2 images, caching has positive impact because caching
reduces number of blocks that need to be fetched from the slow
user-mode qcow2 file in the storage node. Thus, we observe a
big benefit of caching for qcow2 cases. In case of dm-snapshot,
caching has mostly negative impacts because reading blocks from
dm-snapshot is fast enough and thus there would be little perfor-
mance improvement. Also, enabling caching can incur competi-
tion between VM image blocks and application data for the limited
hypervisor cache (32 GB).

Transactional Workload. We vary the number of jmeter threads
from 2 to 10 to generate different levels of application workload to
the DayTrader server. Figure 3(e) shows that the server has reached
saturation point with about 10 jmeter threads. This indicates that
our selection of jmeter thread numbers covers a board range of
workload, from light to heavy.

For each of the four ephemeral on-demand streaming virtual disk
configurations plus the baseline local raw disk format, we have per-
formed the tests with hypervisor caching turned ON and OFF. Fig-
ure 3(f) shows the difference, expressed as percentage, between the
application performance with hypervisor caching turned ON and
that with caching OFF. We notice a small (≤ 5%) but fairly consis-
tent difference. Hypervisor caching helps application performance
when dm-snapshot is used in conjunction with iSCSI, but hurts it
when qcow2 with iSCSI or dm-snapshot with NFS is used. For the
combinations of qcow2 with NFS and local raw disk the impact of
caching is marginal at best.

The throughput numbers in Figure 3(e) represent the best caching
setting for each configuration. Overall, we make the observation
that, when appropriate caching policy is selected, the performance
of a typical multi-tier transactional workload using on-demand stream-
ing virtual disks is very close to that of using a pre-copied local raw
virtual disk.

Big Data Workload. Figure 3(g) shows the execution time of
the Hadoop sort program with 8 and 16 slave VMs. The best perfor-
mance (lowest execution time) is achieved with the pre-copy policy,
which places the entire VM image on the local file system before
a VM starts. The performance gap between on-demand streaming
and pre-copy is 6%-16%. The small degradation in runtime perfor-
mance, together with the obvious advantage in provisioning delay,
indicates that on-demand streaming virtual disks can be a viable
option to support Big Data workloads in the cloud.

The effect of hypervisor caching is illustrated in Figure 3(h). In
contrast to the other two workloads, Hadoop sort suffers perfor-
mance degradation in all configurations when hypervisor caching is
turned ON. This is because the sort program, similar to many other
Big Data applications, has an I/O profile that is intensive in both
read and write. Moreover, most read operations are for scanning
the input and intermediate datasets, resulting in a low rate of data
reuse. Keeping those data blocks in cache increases the memory
pressure on the hypervisor host and reduces the effective memory
size of each VM. As a consequence, within each VM, less memory
can be used for write buffering, leading to longer I/O delays.

4.2 Persistent Volumes
The second set of experiments were performed with the on-demand

streaming virtual disks configured in persistent mode.
I/O micro-benchmarks. Figures 4(a) and (b) show the through-

put of DD and FFSB, respectively, using the persistent storage vol-
ume. The VM images are stored on the remote persistent storage
in the raw format rather than copy-on-write format. These images
are accessed either through iSCSI or NFS protocol. Our first obser-
vation is that hypervisor caching helps read performance, but does
not make much different for write operations. As we have 8 threads
running simultaneously, it is not surprising that caching helps read
performance. The main reason that caching did not help write per-
formance is because the hypervisor caching policy is write-through
and thus enabling caching does not make any difference; write-
through is the typical setting to prevent data loss in case of VM
failures. (VM instances use write-back caching policy and thus
writes are buffered in its own cache, although the size of its cache
is limited.)

Our second observation is that the network protocols (iSCSI ver-
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Figure 3: Runtime performance of three different types of application workloads using ephemeral on-demand streaming virtual disks
and the effect of hypervisor caching on runtime performance shown as percentage difference between performance with caching ON
and that with caching OFF

sus NFS) did not make much difference for both read and write op-
erations. This second observation is consistent with the ephemeral
volume case where iSCSI did not make much difference for raw
format (and qcow2); it provided performance benefit only for dm-
snapshot.

Transactional Workload. The DayTrader performance test on
persistent virtual disks was carried out in similar fashion as de-
scribed in the previous subsection. The results are shown in Fig-
ure 4(c). We make the following observations.

First, with persistent virtual disk, DayTrader reaches approxi-
mately the same maximum throughput as with ephemeral virtual
disk. This suggests that the workload is CPU bound but not I/O
bound. Second, under light load, DayTrader actually has higher
throughput with persistent virtual disk (compare the results for 2
threads in Figure 3(e) and Figure 4(c)). We believe the cause lies
in the combination of the relatively low latency of storage area net-
work and the overhead in copy-on-write. Third, the two streaming

technologies, iSCSI and NFS, perform almost equally well. And
finally, hypervisor caching seems to help iSCSI while hurt NFS, al-
though the perceived difference in end performance is very small.

Big Data workload. As shown in Figure 4(d), when the en-
tire virtual disk, including the base image and newly generated
data blocks, is remotely located, Hadoop sort suffers severe per-
formance degradation. This is because big data workloads are typ-
ically I/O bound and most I/O operations are on newly generated
data blocks. With ephemeral virtual disks, regardless of different
configurations, all newly generated data are stored in local filesys-
tem of the hypervisor host. Another observation is that the NFS
without caching configuration has much worse performance than
the other 3 policies. This is because the NFS client passes the no
caching policy to the NFS server. As a consequence, neither the
hypervisor host nor the storage server will do prefetching on the
Hadoop datasets. This generates a large number of small requests
both over the network and on the hard disk.
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Figure 4: Runtime performance of three different application
workloads using persistent on-demand streaming virtual disks
and the effect of hypervisor caching on runtime performance

4.3 Summary
We summarize the results with the following observations.
1) MBC results suggest that dm-snapshot provides much bet-

ter throughput than raw or qcow2 formats. With dm-snapshot, we
would recommend to use iSCSI rather than NFS to access VM im-
ages and disable hypervisor cache.

2) DayTrader results suggest that on-demand streaming virtual
disk configurations, used in either ephemeral or persistent setting,
offer comparable runtime performance as pre-copied local raw vir-
tual disks, and therefore they can be a practical alternative for tra-
ditional multi-tier transactional workloads, which are typical in en-
terprise computing environments.

3) For Big Data applications such as Hadoop, on-demand stream-
ing virtual disks suffer from slight performance degradation.

In comparing the two main technology components of on-demand
streaming virtual disk, we note that (1) NFS and iSCSI perform
similarly well, and (2) dm-snapshot is a better option than qcow2.

5. CONCLUSION AND FUTURE WORK
This paper presents an empirical study of application runtime

performance using on-demand streaming virtual disks in a cloud
computing environment. We have selected one application for each
of the three classes of commonly seen workloads—an I/O micro-
benhchmark presenting I/O intensive workloads, DayTrader repre-
senting multi-tier tractional workloads and Hadoop sort represent-
ing Big Data analytics workloads. While this is by no means an ex-
haustive list, it offers evidence that on-demand streaming compares
favorably to pre-copying of virtual disk with I/O micro-benchmarks
and multi-tier transactional workloads. However, it does degrade
performance by up to 16% for Big Data workloads such as Hadoop.

As future work, we plan to expand the scope of this study fur-
ther. First, we will include additional benchmarks, for example,
SPC-1, TPC-W for transactional processing, Mahout and Giraph
for MapReduce-based machine learning and graph processing. The
latter two are of particular interest as they gradually emerge as one
of the most important workloads for the cloud. Second, we plan to
perform an in-depth analysis of the root cause of the perceived run-
time performance difference, by conducting tests with additional
storage configurations, such as distributed replicated storage clus-
ter, and studying the effect of existing background workloads. Fi-
nally, we hope to establish an analytical model for the runtime per-
formance so that when a workload is deployed, an a priori analysis
can be performed based on a number of factors such as workload’s
I/O profile, cloud’s storage configuration, co-location with existing
workloads, and a best virtual disk configuration selected.
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