
VDN: Virtual Machine Image Distribution Network
for Cloud Data Centers

Chunyi Peng
Computer Science Department

University of California, Los Angeles
chunyip@cs.ucla.edu

Minkyong Kim, Zhe Zhang, Hui Lei
IBM Watson Research
Hawthorne, NY, USA

{minkyong, zhezhang, hlei}@us.ibm.com

Abstract—Cloud computing centers face the key challenge of
provisioning diverse virtual machine instances in an elastic and
scalable manner. To address this challenge, we have performed
an analysis of VM instance traces collected at six production
data centers during four months. One key finding is that
the number of instances created from the same VM image
is relatively small at a given time and thus conventional file-
based p2p sharing approaches may not be effective. Based on
the understanding that different VM image files often have
many common chunks of data, we propose a chunk-level Virtual
machine image Distribution Network (VDN). Our distribution
scheme takes advantage of the hierarchical network topology of
data centers to reduce the VM instance provisioning time and
also to minimize the overhead of maintaining chunk location
information. Evaluation shows that VDN achieves as much as
30–80x speed up for large VM images under heavy traffic.

I. INTRODUCTION

Cloud computing enables users to access compute resources
on demand without the burden of owning, managing, and
maintaining the resources. To support Infrastructure as a Ser-
vice (IaaS), most cloud platforms use virtualized data centers.
Typically, a cloud data center maintains a catalog that lists
available virtual machine (VM) images. Those images may
contain only the bare operating system such as Linux Red
Hat or Windows, include popular applications such as database
management systems, or even be created by users. Data centers
typically provision diverse VMs to provide various services,
applications and other compute resources. For good system
elasticity and scalability, It is critical for the data centers
to provision VMs fast, even in case of a large volume of
concurrent requests. Unfortunately, today’s cloud data centers
often take tens of minutes to provision even a single VM.

One source of the problem is the size of VM images, which
is typically in the order of gigabytes. Thus, it can take a long
time to read a VM image from the disk and transfer it over the
network. Another source of the problem is the fact that data
centers typically use centralized servers to store and dispense
VM images. Such centralized servers and associated network
interfaces turn into the performance bottleneck when there are
bursty requests from a large population of clients.

Prior research adapts BitTorrent-like sharing in data cen-
ters [1], [2], which allows VM instances provisioned from the
same image file to share the file content among themselves.
This approach is effective only if there are a lot of instances

started from a same image. On the other hand, there might
be substantial common contents across different VM images
in real cloud data centers. BitTorrent-like sharing schemes
are not able to take advantage of such cross-file duplication,
and thus may miss valuable opportunities for performance
enhancement.

In this paper, we propose VDN, a new Virtual machine
image Distribution Network enabling collaborate sharing in
cloud data centers. Our work is motivated by an analysis
of VM instance traces collected from six production cloud
data centers. We find that the number of instances created
from the same VM image is relatively small. However, the
aggregated number of instances started from similar images
(i.e., images with same operating systems or other software
components) is large. Prior studies [3]–[5] have shown that
different VM image files often have common chunks of data.
Therefore, we believed that it would be feasible and beneficial
to allow chunk-level sharing among different images. We
also found that most popular instances have short lifetime. It
implies that cache should keep the chunks beyond the lifetime
of instances to increase availability of common chunks and
enable collaborative sharing.

Different from the conventional BitTorrent-like paradigms,
VDN has two novel features. First, it allows the sharing of
image chunks across distinct VM image files. This greatly
improves the chance to find chunks at the peers. Second,
the distribution network considers the underlying network
topology. The topology of VDN is aligned with the structure of
the physical network, so that the overhead of state maintenance
and data communication is kept low. Our evaluation shows
that, compared to using the centralized image server, VDN can
achieve as much as 30–80x speedup, especially for those large
VM images or when the traffic load is heavy. The speedup is
achieved at a low maintenance cost.

The rest of the paper is organized as follows. Section II
presents our trace study and VM image analysis. Section III
describes the VDN design and Section IV presents evaluation.
We discuss the related work in Section V, followed by
conclusions in Section VI.

II. TRACE STUDY AND IMAGE ANALYSIS

We perform the trace study and image analysis to motivate
the design of image distribution network. Specifically, we

2

S1 S2 S3 S4 S5 S6 All
Instances(%) 11 8 23 18 22 18 100

#Images 125 107 213 200 207 240 355

TABLE I
VM INSTANCES AND VM IMAGES AT SIX DATA CENTERS

would like to understand the patterns of VM instance pro-
visioning requests in a real cloud environment, the VM image
structure and cross-image similarity, and their impacts on VM
image provision. These would provide the design insights to
our image distribution network.

The traces are collected at six IBM operational data centers
during four months: March 10 to July 12, 2011. The traces
record start and end time of each individual VM instance and
its associated VM image ID. Table I lists the number of distinct
VM images used at each data center and the percentage of
instances. These six data centers are small to medium-scale
data centers, where the number of physical machines ranges
from several tens to hundreds. At S1 and S2, the number of
VM images and that of instances are relatively small. This is
because these two data centers have been started recently and
may still be in the growing phase.

To better understand the design of VM image provisioning,
in particular, how to to improve the likelihood of being able to
fetch VM images or chunks from peers, we focus on answering
following questions:

• How many instances are created from each VM image?
Are some images used repeatedly while the rest are not?

• Once an instance is started, how long does it last?
• How many VM instances are running at a given time?
• What is the arrival rate of VM instance provisioning

requests per VM image?
• How similar are the VM images to each other?

In brief, our findings show that the chance to fetch chunks
from peers will increase if a VM image is used frequently and
if it shares common chunks with other popular VM images. It
also helps if the instances started from the image have a long
lifetime. We will elaborate our findings next.

A. VM image popularity

We first study the distribution of the number of instances
created from individual VM images. Figure 1 shows the
number of VM instances associated with each distinct VM
image. The x-axis shows the VM images sorted by the number
of instances in the ascending order. The y-axis shows the
cumulative number of instances in percentage. It is clear that
the distribution is highly skewed and the skewed distribution is
consistent across data centers. A large percentage of instances
are started from a few popular VM images. (We refer the
images who have many instances created being “popular” im-
ages.) For example, 10% of most popular images corresponds
to 80–89% of instances. Insight: The fact that a small number
of VM images are used to create the majority of instances
provides a great opportunity to enable collaborative sharing
among different hypervisors to speed up VM provisioning.

B. VM instance lifetime

We study the lifetime of VM instances. A long lifetime
increases the chance that a new instance is able to fetch
the image from those peers running that instance. Figure 2
shows the lifetime of instances in minutes. The median for all
instances is 85 minutes. Note that there is a knee in the curve;
around 40% has instance lifetime shorter than 13 minutes. We
also explore the relationship between the image popularity and
and their lifetime. We choose the top 20% of images (Popular)
and the bottom 20% (Unpopular) from Figure 1 and plot their
lifetime distribution separately. Figure 2 clearly shows that
the popular images have much shorter lifetime than unpopular
ones. The top 40% short-lived instances are mainly contributed
by those popular images. For unpopular images, the median
lifetime is about 42 hours.

We plot the CDF of instance lifetime in six data centers
in Figure 3. The distribution is similar for most data centers
except S1 and S2. In S1 and S2, more than 60% of instances
have lifetime shorter than 13 minutes. We expect that this is
mostly because S1 and S2 are not heavily used as these two
data centers are relatively new. The medium lifetime (as well
as the 90th percentile) in data centers S1, S2, S3, S4, S5, S6
are 8 min (10 day), 10 min (5 day), 1.5 hr (14 day), 1.5 hr
(22 day), 3 hr (21 day), 1.2 hr (33 day), respectively. Insight:
Because the lifetime of instances is diverse, it is important
for the VM image distribution network to be able to cope
with various lifetime patterns, such as the difference between
popular and unpopular VM images.

C. Concurrent VM instances

We also study the pattern of concurrent VM instances.
Figure 4 shows the number of live instances sampled at every
hour. We ignore the first 10 days (March 10 to March 19)
since there are no records for the instances that started before
March 10 but were still running after March 10. The values
are normalized by dividing each by the maximum value across
all data centers. The number of instances are mostly stable in
all data centers. All data centers, except S6, show that the
number is increasing steadily over time.

Figure 5 shows the ratio of the number of live instances to
that of live VM images. The ratio ranges from 1 to 7.5. This
means that the number of instances started from exactly the
same image is small. It implies that P2P such as BitTorrent [1],
[2] where the chunks can be fetched from only the peers who
have exactly the same files, may not work well because the
number of instances started from exactly the same VM image
is small.

To further understand the sharing possibility from peers
with the same VM image instances, we show the example
distribution of live instances across all live VM images at one
data center (S6) at a specific time (12 AM, May 19, 2011)
in Figure 6. The x-axis represents the live VM images, sorted
in ascending order by the number of instances. The y-axis
represents the number of live instances. The total number of
instances at this time was 691. These instances are started
using 126 unique VM images, and 89 images (71% of all

3

0 20 40 60 80 100
0

20

40

60

80

100

Number of VM images (%)

C
u
m

u
la

ti
v
e
 i
n
s
ta

n
c
e
s
 (

%
)

S1
S2
S3
S4
S5
S6
All

Fig. 1. Distribution of VM image popularity.

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

Instance lifetime (min)

C
D

F

Popular

Unpopular

All

Fig. 2. Popular vs. unpopular instance lifetime.

10
0

10
2

10
4

0

0.2

0.4

0.6

0.8

1

C
D

F

Instance lifetime (min)

S1

S2

S3

S4

S5

S6

All

Fig. 3. VM instance lifetime in various data
centers

Mar 20 Apr 19 May 19 Jun 18
0

25

50

75

100

N
o

rm
a

liz
e

d
 #

 o
f

liv
e

 i
n

s
ta

n
c
e

s
(%

)

S1 S2 S3 S4 S5 S6

Fig. 4. Normalized number of live instances
over time.

Mar 20 Apr 19 May 19 Jun 18
0

2

4

6

8

#
(l
iv

e
 i
n
s
ta

n
c
e
s
)/

#
(l
iv

e
 V

M
s
)

S1 S2 S3 S4 S5 S6

Fig. 5. The ratio of #live instances
#live VMs over time.

 0

 5

 10

 15

 20

 25

 30

 35

 0 20 40 60 80 100 120

N
u
m

b
e
r

o
f
liv

e
 i
n
s
ta

n
c
e
s

Live VM images (sorted)

Fig. 6. Distribution of live instances across
live VM images at S6 at 12 AM.

images) had less than or equal to 5 instances. Thus, if only
the same files can share their chunks, there may be little
opportunity to fetch chunks from nearby peers. Insight: The
conventional P2P approach may not be efficient in VM image
provisioning because the number of instances started from the
same VM image is small.

D. Arrival rate of provisioning requests

We now look into the inter-arrival time of instance provi-
sioning requests. Figure 7 shows the CDF of arrival intervals
of one popular VM image who is at 98th percentile from
each data center. For unpopular images, the numbers of
provisioning requests are too small to obtain meaningful inter-
arrival distributions; most of them were used only several times
during four months. The median inter-arrival rate ranges from
7 seconds to 4 hours in six data centers. S1 and S2 have the
largest inter-arrival time; this is probably because S1 and S2
are not heavily used. and the most VM instances are launched
on schedules (the interval is about two hours). S3 and S5 have
the smallest inter arrival time (7 seconds and 46 seconds);
many instances are requested in the batch mode. Different
applications and user activity patterns lead to different arrival
rates. We notice that the arrival rates do not confirm to Poisson
distribution or other simple distributions. Thus, we use the real
traces to drive our evaluation. Insight: The distribution network
should work well with various traffic arrival patterns.

E. VM image structure

In six data centers, we have the total of 355 unique VM
images. Those images can be categorized into a tree structure
based on their OS, application variety, versions and formats.
Figure 8 shows a part of the image tree at S6 and the structures

10
−2

10
0

10
2

10
4

10
6

0

0.2

0.4

0.6

0.8

1

Arrival intervals (min)

C
D

F

S1

S2

S3

S4

S5

S6

Fig. 7. CDF of arrival intervals of one popular VM images in each data
center.

are similar at other data centers. The VM images are divided
into subtrees based on OS (such as Linux and Windows)
and major applications. Each branch is then divided into
subtrees, based on providers or versions. For example, Linux
has branches depicting Red Hat and SUSE Enterprise and it is
further divided into lower-level branches based on the version
(e.g. v5.4, v5.5 and v6). Each leaf represents the actual VM
image file.

This categorization provides the basis for understanding
how VM images are constructed and how similar they are.
Most VM images are first constructed using a base image
with OS and the patches can be applied or applications can be
installed. After installation, a new VM images is created and
added to the image library. Because much of files are shared
among VM images that started from the same base image,
we would find high similarity among them. Satyanarayanan et
al. [6] has also shown that if a set of images is based on the
same major version of operating system (e.g., Linux Red Hat
5.X), the similarity is high (more than 50%). Insight: The tree

4

Linux
(60%)

Windows
(25%)

Services
(11%)

Misc
(4%)

Red Hat
(53%)

…
…

......
Live Service M

anager(1.2%
)

IDE (1.3%
)

Database (1.3%
)

V7.0 P (0.1%
)

 V7.0.0.11 S D (0.2%
)

 V7.0.0.11 R B (0.3%
)

 V7.0.0.11 S B (0.3%
)

 V7.0.0.11 S P (0.7%
)

 V7.0 B (0.7%
)

SUSE
(7%) ……

…
…

Linux v6.0 (32 bit) (0.04%
)

Linux v5.6 (32bit) (0.2%
)

Linux v5.5 (32bit) (26.6%
)

Linux v5.5 (64bit) (18.7%
)

Linux v5.4 (32bit) (4%
)

…

…

Web app.
server
(2.4%)

Fig. 8. The VM instance portions along VM image tree in S6.

structure implies the similarity between VM images.

F. VM image similarity

For data centers S1–S6, which we have collected the VM
instance traces, we do not have access to actual VM image
files. Therefore, we have collected real VM images (525 in
total) from another production data center and conducted an
empirical study of VM image similarity [5]. These VM images
reflect a snapshot of the image repository and we expect
that the overall results of image similarity should be similar
to our environment. We explored different chunk schemes,
such as fixed-size or variable-size chunks for cross-image
similarity. We studied the pairwise similarity between any two
VM images as well as the duplication factor, defined as the
the number of VM image files containing a specific chunk.
It turns out there exists a large number of common chunks
among various VM images. For example, 12.2% of chunks are
common to 2 images for the fixed-size chunking schemes, and
the median of pairwise similarity for 4KB fixed-size chunking
can reach 48%. These results are also consistent to the findings
in other chunk-level file similarity studies [3], [4], [7]. Insight:
The high similarity among images provides a great opportunity
to enable cross-image content sharing.

G. Popular and unpopular VM images

We further explore the instances for the popular and un-
popular VM images. For a given image tree (e.g. S6 in Figure
8), we find that some images are popular while the rest are
extremely unpopular (less than 1% of all instances.) Figure 8
shows the percentage of instances for each VM image at S6.
Linux contributes to majority of instances (60%), followed by
Windows (25%) and Services (11%). Among Linux, Red Hat
contributes to 53%. If we look into different versions of Red
Hat, we find that v5.5 32 bit and 64 bit versions are popular
while the other versions are unpopular. By allowing chunk-
level sharing among Red Hat images of different versions,
even the unpopular Red Hat images can get much of their
data from peers who have popular Red Hat versions.

In contrast to VM images where only the OS is installed, the
VM images with a particular application is usually unpopular,
meaning that only a few instances are created from a exactly
the same image. For example, the branch with “Services”
(those VM images with applications installed) in Figure 8.
However, if we consider the cluster of images (those in the
same subtree), the number of instances becomes substantial. In

other words, by allowing chunk-level sharing among different
VM images, there still exists a large opportunity to fetch
much of data from peers who have similar images. Insight:
Chunk-level sharing may benefit the instances started from
both popular and unpopular VM images.

III. VDN DESIGN

In designing the VM image distribution framework, our
primary objective is to maximize the amount of VM image
data that is available locally or on nearby peers when the image
is needed. Being able to fetch image file from nearby peers
will reduce heavy I/O at the image server and network traffic
for transferring image file and thus make VM provisioning
faster. In the rest of this section, we present key components
of our design.

A. Chunk-based content distribution

The distribution of VM image data should be based on the
unit of chunks, instead of entire VM image files. The reason is
twofold. First, as discussed in Section II, VM image files show
high similarities. This implies that multiple VM instances can
share data even when they are using two different (but similar)
images. Second, a VM instance can start without fetching the
entire image file. For example, in virtualization mechanisms
such as QEMU QCOW2 [8] and FVD [9], only a small
portion of VM image data is transferred to the host to start a
VM instance, and the remaining image data is transferred on
demands. It also makes VM provisioning fast and improves
the runtime performance.

In our design, each VM image file can be divided into
either fixed or variable-size chunks. Each chunk is identified
by hashing its content using a hash function such as SHA-1.
In this way, identical chunks from multiple VM images can
be found easily. In the rare case where different chunks are
mapped to the same hash value, hash collision techniques can
be applied [10]. The method to divide VM images into chunks,
or chunking method, is a separate research topic orthogonal
to our study. In fact, the VDN framework can work with
different chunking schemes, including fixed-size chunking,
Rabin fingerprinting [11], and the Mirage scheme [3], where
each file within the file system of an individual VM image
denotes one chunk.

The file-based approaches, often used in P2P media content
distribution, allow sharing among the instances of a same
file. Compared to these file-based approaches, our chunk-
based scheme is much more flexible and efficient. First, in
our scheme individual chunks can be transferred on demand
with low cost. Second, by de-duplicating chunks with the same
content, our scheme significantly saves storage space. At each
host, we only keep one copy of a chunk at the shared cache,
even when multiple VM instances are using it. Finally, when
a host runs out of storage space, we can evict “cold” chunks
and keep all “hot” chunks, instead of evicting the entire image
at a time. This will enhance local data availability.

5

B. Host-level cache

In our VDN framework, each physical host maintains a
cache in its locally attached storage to hold chunks of VM
image files. This host-level cache resides in the hypervisor
software module (such as KVM) so its content is exposed to all
VM instances running on the host. Therefore, when a new VM
instance is started, it can leverage VM image chunks already
available in the local cache instead of having to fetch the entire
image from the central image server. Moreover, having a cache
on the host level facilitates data sharing among peer hosts in
the data center.

The simplest cache replacement is to correlate the lifetime
of image chunks with the VM instances that use them. In other
words, a chunk is evicted as soon as no running VM instance
is using it. This method (referred as live cache) allows the
image data sharing among multiple active VM instances. The
downside of this scheme is that new VM instances cannot
make use of the chunks from those instances that have been
terminated.

Our measurement in Section II shows that instances may
be short-lived. Therefore, our VDN framework adopts an
improved cache management scheme (referred as fixed cache),
where a fixed size of storage is used and the cached chunk does
not get evicted even when all the instances using it have been
terminated; it gets evicted when the cache is full. This scheme
enables the reuse of VM instances started at different time. For
simplicity, the cache is managed in First-in, First-out (FIFO)
fashion. However, other cache management policies, such as
Least Recently Used (LRU) and other greedy strategies [12],
which complement our VDN work, are still applicable but are
beyond the scope of this paper.

C. Efficient collaborative sharing

Because individual VM images are big and the total number
of images can also be very large, it is practically impossible
for a cloud system to store all VM images in the local cache
of every node. Having centralized image servers to serve all
the request also do not scale well as they easily become
the bottleneck. Thus, it is essential to build a collaborative
mechanism to allow sharing of image data among peers. It has
significant advantages over the scheme of using a centralized
image server or merely relying on local caches.

In the collaborative sharing of locally stored VM image
data, one key factor affecting the performance and efficiency
is metadata management. The metadata consists of the list of
hosts who have the chunks. When a chunk of data is missing
from a host’s local cache, the host should be able to quickly
find a peer with the required data (i.e., lookup). When a new
chunk enters a host’s local cache or the local cache evicts a
chunk, all other hosts should get the latest information when
they query (i.e., publish).

To better motivate our design, we first describe the typical
network topology of data centers. The current data centers, es-
pecially the commercial ones, typically employ a hierarchical
network topology, such as a tree [13] or fat-tree [14] structure.
As shown in Figure 9(a), physical hosts within the same rack

(a) Hierarchical data center network (b) Hierarchical index nodes

Fig. 9. Illustration of VDN-topo index node formulation.

are connected by top-of-rack switches and form the bottom
of the hierarchy. Then, the hosts from different racks are
connected through another level of switches (e.g., aggregate
switches). Finally, they connect with the higher-level switches
or the root switches and form a complete data center network.
Based on the study of over-subscription tree structures [14],
the available bandwidth decreases as the link level increases. It
means that the hosts within the same rack can transfer data at
a higher speed than the ones at different racks via higher-level
switches. Our key technique is to exploit data center network
topology and cross-image similarity to design VDN metadata
management. In the following, we elaborate three collaborative
sharing schemes: VDN-naive, VDN-flat and VDN-topo.

1) VDN-naive: A straightforward (but naive) scheme is for
each host to maintain the metadata of its locally cached data.
When the requested chunk is not found locally, a lookup query
is broadcasted first within a rack, and then goes upward in the
network hierarchy until the chunk is located. The advantage of
this scheme is simplicity as no metadata management nodes
are needed. In specific, cache updates (publish) have negligible
overhead; when a local cache accepts or evicts a chunk, it does
not need to update any other nodes. This scheme works well
if the majority of required data is available locally or in the
same rack. However, if data locality is poor, many queries will
be broadcasted to a large number of hosts, leading to heavy
network traffic and high lookup latency. This can be a severe
problem in large scale data centers.

2) VDN-flat: An alternative design option that mitigates
the inefficiency of data queries in VDN-naive is to use a
distributed hash table (DHT) for metadata management. Using
the hash (e.g., consistent hashing [15]) of a chunk as the key,
we can locate the node who has the corresponding metadata.
It is simple to implement lookup and publish operations and
to handle node joining and leaving events. This design is
similar to other P2P practices [1], [2], except that we enable
chunk-level sharing. However, the downside is that it does
not fully explore the underlying network topology. Thus, the
performance may not be ideal. When a host chooses a peer
to download a chunk from, it will prefer the closest one to
speed up data transmission. Therefore, the host may not need
the entire list of all the nodes who has that chunk. However,
VDN-flat requires each node to be responsible to keep track
of the entire list, which may introduce unnecessary traffic.

3) VDN-topo: We present a new scheme, called VDN-topo,
which fully utilizes the underlying network structure of data

6

centers. VDN-topo uses index nodes to manage metadata. The
key idea is to organize index nodes following the hierarchical
structure, which aligns with the underlying network topology.
The red and blue circles in Figure 9 illustrate how hierarchical
index nodes are constructed. Each index node is responsible
for a physical domain, for example, one rack (here, L1) or the
cluster that connects with the same aggregation switch(here,
L2). The lowest level (L1) index nodes store chunk location
information in a chunk-at-host table (called CAHT). The
higher level index nodes store the information (1) whether
its subtree has this chunk and (2) the actual index node who
has that metadata. At least one index node is needed for each
hierarchical physical domain and multiple redundant index
nodes can be used for system reliability. Since data center
topology is known in advance, the physical domains and their
corresponding index nodes can be pre-defined or adjusted
dynamically.

VDN-topo implements lookup and publish operations in
a similar manner as VDN-flat. The difference is that the
communication domain is mainly determined by the data
center topology, while it is based on the hash key (determined
by chunk ID) in VDN-flat. For lookup, the host may send the
lookup request to its lowest level index node (here, L1); the
index node responds directly if it hits in CAHT. Otherwise,
the index node communicates with the higher level index
node (L2) to fetch metadata until reaching the highest level
index nodes. For publish, the host sends an update message
to its lowest level index node and then the index node may
update its CAHT. It aggregates the update messages with the
current CAHT, and sends one update to the higher level only
if the aggregation information has changed. As an example,
we assume there are two hosts a and b that have chunk c.
Once host a sends an update to notify the index node that
chunk c expires, the index node may remove host a from its
own CAHT but it will not update at the higher level since the
whole cluster still has this chunk. During the procedure, the
lowest index nodes acts like an agent in DNS systems. Such
design increases the portion of local communication, which is
usually faster and has less contention. Another benefit of VDN-
topo is that it is not necessary to acquire the global knowledge
of hosts who have chunks. Instead, the local host information
is sufficient. Consequently, the topology-aware design reduces
the number of CAHT entries, as well as the overhead of
global metadata management, without decreasing collaborative
sharing opportunities.

There are several optimizations. The first is to build a cache
of the CAHT at hosts or index nodes when it passes. It can
save the number of lookup messages and we can maintain
these cache in a soft-state way. The second is to aggregate
chunk-based operations. The message can contain a list of
chunk IDs and save many operations into a single one. In
VDN-topo, these operations (lookup and publish) follow the
same topology and one message is sufficient (e.g., the hosts
sends one lookup message for all the needed chunks to L1

index nodes). While in VDN-flat, hashes of those chunks may
be different and multiple messages have to go through different

paths to different destinations even though the message contain
a list of chunk IDs in a batch mode.

D. VDN-friendly placement

Another way to improve the locality of VM image data
is to coordinate the VM placement with VDN. When the
cloud manager (front end) receives a request from a user to
provision a new VM instance with a specified image, it can
query VDN first to locate a host whose cache contains the
largest amount of the image data. This data locality can be
one factor in making the placement decision and needs to
be considered together with other factors, including current
load and communication pattern. It is referred to as VDN-
friendly placement scheme. Note that the VDN framework is
compatible with other placement strategies such as random
(where VM instances are allocated to hosts at random) or
min-loaded (where the hosts with lower loads are preferred)
schemes. VM placement is an independent and hot topic and
it is discussed in many prior studies such as [16].

IV. EVALUATION

To evaluate VDN, we have developed a simulator in MAT-
LAB 7 and conducted simulation studies driven by real traces.
We compare VDN scheme with two approaches that do not
perform collaborative sharing. The first is called baseline
where each host only fetches VM image chunks from the
central image server. The second is called local, where each
host uses host-level cache. We also study the performance of
three VDN variants: VDN-topo, VDN-naive and VDN-flat.

We use provision time and management overhead as perfor-
mance metrics. The provision time is defined as the time that
the data center takes to dispense the needed VM image data
upon receiving a user request. Note that we only consider the
transfer time in the provisioning process since it is our design
focus. To compare different provisioning schemes, we define
the speedup factor as α(s) = tb−ts

ts
, where tb is the provision

time using baseline and ts is the one using scheme s. The
VDN overhead is measured by the number of extra messages
and communication cost for them.

The basic setting is as follows. We use one month (May 1
to May 31) trace of instance requests to drive our simulation.
Each VM image file is composed of fixed-size chunks and
the default chunk size is 4 MB. The total size of VM image
can vary from 128 MB to 8 GB 1. The cross-file similarity
values are set according to our measurement in [5]. We use
a three-level tree topology data center [13]. Considering the
traces are collected from small and medium-size data centers,
we use a 4×4×8 tree topology with 128 hosts. In specific, the
root switch (at L1 level) connects four L2 aggregate switches
and each L2 switch connects four racks, each consisting of
8 nodes. We assign 200 Mbps, 500 Mbps and 2 Gbps for
L1, L2, and L3 (within the same rack) links, respectively. We
assume that the total bandwidth from any host to the image

1In case an VM instance can start without gathering a complete VM image,
the size of VM image in the evaluation means the one of those mandatory
image data to launch a VM instance.

7

S1 S2 S3 S4 S5 S6
50th 90th 50th 90th 50th 90th 50th 90th 50th 90th 50th 90th

Baseline (s) 8.2 9.7 8.3 9.3 8.4 24.8 8.5 62.9 8.3 22.4 8.4 46.6
Local (s) 4.8 8.3 4.3 8.3 5.1 8.8 5.5 8.9 5.5 9.1 5.4 8.9
VDN (s) 0.26 3.4 0.25 3.3 0.28 3.4 0.33 4.1 0.32 3.8 0.28 3.5

Speedup(×) 30.2× 1.9× 32.0× 1.8× 29.4× 6.3× 24.7× 14.3× 24.9× 4.8× 29.3× 12.5×
TABLE II

PROVISION TIME FOR 512 MB VM IMAGES IN SIX DATA CENTERS

S1 S2 S3 S4 S5 S6
50th 90th 50th 90th 50th 90th 50th 90th 50th 90th 50th 90th

Baseline (s) 66 185 66 149 174 1055 213 1174 187 1345 206 3620
Local (s) 46.4 68 43.5 66.8 49.5 148.2 53.7 177.4 55.6 160.9 50.0 270.8
VDN (s) 2.4 33 2.4 29 2.5 118.6 2.8 78.8 2.8 94.9 2.5 81

Speedup(×) 26.4× 4.6× 26.4× 4.1× 69.6× 7.9× 75.9× 24.8× 65.2× 13.2 × 81.6× 43.7×
TABLE III

PROVISION TIME FOR 4 GB VM IMAGES IN SIX DATA CENTERS

128MB 512MB 4GB

0.01

0.1

1

10

100

VM image size

P
ro

v
is

io
n

 t
im

e
 (

s
)

Baseline Local VDN

(a) S1

128MB 512MB 4GB

0.01

0.1

1

10

100

1000

VM image size

P
ro

v
is

io
n

 t
im

e
 (

s
)

Baseline Local VDN

(b) S6

Fig. 10. Provision time for VM instances over time using baseline, local,
VDN in data centers S1 and S6.

server is 1 Gbps. We assign relatively high bandwidth for these
image servers since they are usually well configured with more
powerful disk and network. We use a FIFO queue to emulate
how its available bandwidth decreases as more requests arrive
and cause congestion and delay.

A. Provision time

We first compare the provision time using baseline, local
and VDN. Because all the VDN variants have similar provision
time, by default we only present VDN-topo. The benchmark
setting is as follows. For the VM instance placement, we
randomly allocate instances among the eligible hosts up to five
instances at each host. We repeated simulation, while varying
the size of VM image: 128 MB, 512 MB and 4 GB. We used
a fixed-size cache, whose the size is twice the VM image.
We assume that no VM chunks are available at any host in
the beginning of each simulation. Table II and III show the
provisioning time and VDN speedup factors for 512MB and
4GB VM images in six data centers. Figure 10 plot the 50th
(median) and 90th percentile of provision time at two example
data centers, S1 and S6, when the image file is 128 MB,
512 MB and 4 GB, respectively. The black lines depict the
90th percentile. We do not plot the 10th percentile because it
is close to zero in all cases.

We make four observations. First, VDN performs best and
the performance gain is significant. For example, at S6 in
Figure 10(b), the median provision time for a 4 GB VM image
decreases from 3.4 minutes to about 2.5 s and in the worse
case (90th percentile), it can reduce from about 1 hour to
1.5 minute. Table II and III show that the speedup factor can
reach as much as 30x for 512 MB images and 60–80x at S3–

S6 for 4 GB images. It demonstrates that VDN can largely
increase the provision efficiency.

Second, local availability and collaborative sharing are
major contributing factors to the performance gain. The benefit
from local availability is clearly seen by comparing local and
baseline, while the benefits created by collaborative sharing
can be observed by the comparison of VDN and local. When
the chunk availability at a single host is high, the gain from
local is significant. For example, the provision time decreases
from 206 s to 50 s at S6 in Figure 10(b). It contributes to
up to 3x speedup. The local availability is determined by
request patterns, placement and cache mechanism. We will
explore their effects in details next. We also observe that
collaborative sharing plays a more important role even when
local availability is not high. Take an example of case (a)
at S1. Although the speedup from baseline to local is limited
(about 0.5x), the improvement caused by collaborative sharing
is still huge (about 26x). It demonstrates that VDN enhances
the benefits of host-level cache at each peer by aggregating
them via collaborative sharing so that the performance gain
still grows dramatically even as the local availability increases
only by little.

Third, the performance improvement are applicable to most
VM instances. When the provision time for the 90th percentile
instance is considered, the speedup factors are still high.
For example, it can reach 5-15x for 512 MB files and 10–
40x for 4 GB files at S3–S6. Although the 90th percentile
speedup factor may reduce a little bit, the absolute provision
acceleration is more significant (e.g. one hour faster for 4 GB
image at S6).

Fourth, provision performance varies under different factors.
It varies across data centers. S1 and S2 had not much per-
formance improvement, because the number of live instances
is small and their lifetime is short. From now on, we use
S1 and S6 as our example data centers. We also notice that
the improvement in small files is smaller. It is because the
bandwidth to and from the image server is higher than that
between two arbitrary hosts, fetching from peers can take
longer than doing so from the image servers, especially when
the load at the image servers is light; in our simulation, we

8

S1 S2 S3 S4 S5 S6
0

200

400

600

800

1000
N

u
m

b
e

r
o

f
m

e
s
s
a

g
e

s

topo flat naive

(a) # of messages

S1 S2 S3 S4 S5 S6
0

2

4

6

8

10

C
o

m
m

u
n

ic
a

ti
o

n
 C

o
s
t

topo flat naive

(b) Communication cost

Fig. 11. Management cost using VDN-topo, VDN-flat, VDN-naive in six data
centers.

128 MB 512 MB 2 GB 4 GB 8 GB
Baseline(s) 6.9 46.6 522.4 3620 29489

VDN(s) 0.6 3.5 17.2 80.1 433
Speedup 10.5× 12.3× 29.3× 44.2× 67.1×

TABLE IV
PROVISION TIME FOR VM IMAGES WITH VARIOUS SIZES

set the achievable bandwidth from the image server to 1 Gbps,
while the one to the remote host is 200 Mbps.

B. Management overhead

We compare the overhead of different metadata management
schemes. Figure 11(a) shows the number of control messages
sent out to maintain metadata. We find that the number of
messages is much smaller for VDN-topo and VDN-flat than
for VDN-naive. This is mainly because VDN-naive needs to
broadcast the messages requesting the metadata. VDN-topo has
even smaller number of messages than VDN-flat because the
most messages do not traverse more than one level of the tree.

Figure 11(b) shows the communication cost for metadata
management. It is shown in [16] that the cost to deliver a
message along different paths should be distinct and that the
communication cost for closer peers is smaller. We assume
the cost values corresponding to different levels are inversely
proportional to the available bandwidth. That is to say, the
cost ratio within the root switch(L1), the same aggregation
switch(L2), and the rack(L3) is 10 : 4 : 1. Because VDN-naive
does not maintain meta-data, the communication cost is lowest
among the three. In VDN-topo, communication is mostly
within the rack and thus it has a much lower communication
cost than that of VDN-flat.

C. Scalability

To test the scalability of VDN, we adopt three measures
to adjust the incoming traffic loads and the system serving
capability. The first measure is to stress our system by ad-
justing the time granularity of real traces. The shorter inter
arrival rates are, the heavier traffic loads are. Note that we
do not change the sequence of instance requests. The second
measure is to construct different sizes of VM images (from
128 MB to 8 GB) using the same traffic pattern as real traces.
The third one is to reduce the available network bandwidth by
a factor of 1

5 (referred as “lowBW”). It corresponds to raising
heavy requests for data centers.

Figure 12 shows the provision time to launch 4 GB VM
images using three schemes at S1 and S6. It shows that VDN
is scalable even when the requests are increased by multiple
times. VDN works even better with heavier requests and lower

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(a) S1, 50th(median)

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(b) S1, 90th

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(c) S6, 50th(median)

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(d) S6, 90th

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(e) S6, 50th(median), lowBW

1 5 10 20 60
1

10

100

1000

10000

Time factor

P
ro

v
is

io
n
 t
im

e
 (

s
)

Baseline

Local

VDN

(f) S6, 90th, lowBW

Fig. 12. Provision time under varying traffic loads and network bandwidth

Random Min loaded VDN−friendly
0.1

1

10
P

ro
v
is

io
n
 t
im

e
 (

s
)

Baseline

live cache

 cache = 1x

cache=2x

(a) 512 MB

Random Min loaded VDN−friendly
1

10

100

1000

P
ro

v
is

io
n

 t
im

e
 (

s
)

Baseline

live cache

cache = 1x

cache=2x

(b) 4 GB

Fig. 13. Provision time under various placement and caching schemes at S6.

bandwidth (see Figure 12(a), 12(c), 12(e)). This is because
more chunks are available locally and from nearby peers. We
also notice that the median performance is less sensitive to
heavy traffic than the 90th percentile performance. It turns
out that the VM image popularity contributes to it. Most
VM instances come from a few popular VM images and the
provision performance can be guaranteed with simple cache
and peer sharing. The performance for the 90th percentile
instance shows that VDN still works well even with those
unpopular images.

Table IV shows the 90th provision time to fetch variable
size VM images using VDN at S6. Due to space limitation, we
omit many other results since the median performance is better
and the conclusion is similar at other data centers as shown
before. As expected, VDN performs better as the distribution
volume increases, compared with other distribution schemes.
The issue is that the image server tends to be the bottleneck
when dealing with a large-size VM image provisioning in a
centralized way. It shows that VDN can contribute to a more
scalable VM provisioning where the provisioning time grows
much slower (almost linearly) in regards of the VM size.

D. Design components

We studied the impacts of design options on local cache
management and VM instance placement. Figure 13 shows the
median and 90th percentile of provision time using different
placement policies (random, min-loaded and VDN-friendly)

9

and cache options (live and fixed with different cache sizes) at
data center S6. First, using host-level cache provides signifi-
cant performance improvement. Performance improves further
with a larger cache (cache=2x). The cache is more crucial
to the 90th percentile performance because it yields higher
availability (locally or from close peers) for those less popular
VM images. Second, with VDN-friendly placement, we see
that the provisioning time is extremely small; different caching
mechanisms play a less important role.

V. RELATED WORK

In cloud computing, fast provisioning of VM instances has
significant impacts on the overall system performance and
elasticity. Therefore, many efforts have been made on this
topic [1], [2], [17]–[22]. These solutions can be divided into
two categories based on their focuses.

The first group takes a network-driven approach to speed
up the VM image distribution, including our VDN. [1], [20]
introduce P2P techniques for VM provisioning. By treating an
entire VM image file as a BitTorrent seed file, it disables the
delivery of chunks of image data, which is essential for starting
VM instances on partial images. Their work also ignores
the topology of data center network. A recent study revises
the BitTorrent protocol for data delivery in data centers [2].
However, it does not consider VM provisioning requirements.
[21] proposes a solution to reduce the retrieval latency for data
centers with a two-tier network topology ignoring different
network connections among edge nodes. [22] investigates the
VM image distribution among multiple data centers. Different
from them, our VDN framework yields a more efficient sharing
mechanism via utilizing common chunks in different VM
images and high network bandwidth between close hosts
which is common in any hierarchical data centers.

The second category focuses on non-network efforts. For
example, the Twinkle system reduces VM transfer volume to
speed up the initialization of VM instances using demand
predication and partial page launch [17]. Iceberg applies
VM image streaming to reduce the initial latency of VM
provisioning [19]. It also enables duplicate chunk sharing but
it does not adopts a topology-aware metadata management.
[18] minimizes VM provisioning time via the optimization
of staging schedules. It mainly works on data placement on
centralized storage servers, without considering caching image
data on compute nodes. The chunking, content caching and
source selection policies (e.g., [3], [12], [16]) are orthogonal
to our study and can complement the VDN framework.

VI. CONCLUSION

Cloud computing centers face the key challenge of provi-
sioning diverse virtual machine instances in an elastic and scal-
able manner. To better understand the provisioning problem
and develop a new solution, we analyzed real VM images and
VM instance traces collected at six data centers. We found
that the conventional P2P sharing may not be applicable since
the number of same VM instances is not big. Motivated by
our findings of the trace analysis, we developed VDN, a new

VM image distribution network on the top of chunk-level,
topology-aware collaborative sharing. Our evaluation shows
that, compared with the centralized approach, VDN achieves
as much as 30x-80x speedup, especially for the large VM
images under heavy traffic.

Acknowledgments: We would like to thank our colleagues
who have helped us: Han Chen, K. R. Jayaram, Xiaoqiao
Meng, Chang-Shing Perng, Jian Tan, and Norbert Vogl. We
are also grateful to Prof. Songwu Lu for his strong support
and many fruitful discussions. We also thank all the reviewers
for their insightful comments and valuable suggestions.

REFERENCES

[1] Z. Chen, Y. Zhao, X. Miao, Y. Chen, and Q. Wang, “Rapid provisioning
of cloud infrastructure leveraging peer-to-peer networks,” in ICDCS
Workshops, 2009.

[2] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, “Manag-
ing data transfers in computer clusters with orchestra,” in SIGCOMM,
2011.

[3] D. Reimer, A. Thomas, G. Ammons, T. Mummert, B. Alpern, and
V. Bala, “Opening black boxes: using semantic information to combat
virtual machine image sprawl,” in VEE, 2008.

[4] K. Jin and E. L. Miller, “The effectiveness of deduplication on virtual
machine disk images,” in SYSTOR, May 2009.

[5] K. R. Jayaram, C. Peng, Z. Zhang, M. Kim, H. Chen, and H. Lei,
“An empirical analysis of similarity in virtual machine images,” in
Middleware, Dec 2011.

[6] M. Satyanarayanan, W. Richter, G. Ammons, J. Harkes, and A. Goode,
“The case for content search of vm clouds,” in COMPSACW, 2010.

[7] K. Tangwongsan, H. Pucha, D. G. Andersen, and M. Kaminsky, “Effi-
cient similarity estimation for systems exploiting data redundancy,” in
INFOCOM, 2010.

[8] M. McLoughlin, “The qcow2 image format,”
http://people.gnome.org/ markmc/qcow-image-format.html.

[9] C. Tang, “FVD: A high-performance virtual machine image format for
cloud,” in USENIX ATC’11, 2011.

[10] X. Wang, Y. L. Yin, and H. Yu, “Finding collisions in the full sha-1,”
in CRYPTO’05, 2005.

[11] M. O. Rabin, “Fingerprinting by random polynomials,” Center for Re-
search in Computing Technology, Harvard University, Technical Report
TR-15-81, 1981.

[12] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in INFOCOM, 2010.

[13] Juniper, “Cloud-ready data center reference architecture,”
http://www.juniper.net/us/en/local/pdf/reference-architectures/8030001-
en.pdf.

[14] M. Al-Fares, A. Loukissas, and A. Vahdat, “A scalable, commodity data
center network architecture,” in SIGCOMM, 2008.

[15] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: distributed caching
protocols for relieving hot spots on the world wide web,” in STOC,
1997.

[16] X. Meng, V. Pappas, and L. Zhang, “Improving the scalability of
data center networks with traffic-aware virtual machine placement,” in
INFOCOM, 2010.

[17] J. Zhu, Z. Jiang, and Z. Xiao, “Twinkle: A fast resource provisioning
mechanism for internet services,” in INFOCOM, 2011.

[18] A. Epstein, D. H. Lorenz, E. Silvera, and I. Shapira, “Virtual appli-
ance content distribution for a global infrastructure cloud service,” in
INFOCOM, 2010.

[19] L. Shi, M. Banikazemi, and Q. B. Wang, “Iceberg: An image streamer
for space and time efficient provisioning of virtual machines,” in
International Conference on Parallel Processing - Workshops, 2008.

[20] R. Wartel, T. Cass, B. Moreira, E. Roche, M. Guijarro, S. Goasguen, and
U. Schwickerath, “Image distribution mechanisms in large scale cloud
providers,” in CLOUDCOM, 2010.

[21] M. Björkqvist, L. Y. Chen, M. Vukolic, and X. Zhang, “Minimizing
retrieval latency for content cloud,” in INFOCOM, 2011.

[22] M. Schmidt, N. Fallenbeck, M. Smith, and B. Freisleben, “Efficient
distribution of virtual machines for cloud computing,” in PDP, 2010.

