
Safety, Visibility, and Performance in a Wide-Area File System

Minkyong Kim, Landon P. Cox, and Brian D. Noble
Electrical Engineering and Computer Science

University of Michigan
{minkyong,lpcox,bnoble}@umich.edu

Abstract

As mobile clients travel, their costs to reach home filing ser-
vices change, with serious performance implications. Current
file systems mask these performance problems by reducing
the safety of updates, their visibility, or both. This is the re-
sult of combining the propagation and notification of updates
from clients to servers.

Fluid Replication separates these mechanisms. Client updates
are shipped to nearby replicas, called WayStations, rather than
remote servers, providing inexpensive safety. WayStations and
servers periodically exchange knowledge of updates through
reconciliation, providing a tight bound on the time until up-
dates are visible. Reconciliation is non-blocking, and update
contents are not propagated immediately; propagation is de-
ferred to take advantage of the low incidence of sharing in file
systems.

Our measurements of a Fluid Replication prototype show that
update performance is completely independent of wide-area
networking costs, at the expense of increased sharing costs.
This places the costs of sharing on those who require it, pre-
serving common case performance. Furthermore, the benefits
of independent update outweigh the costs of sharing for a work-
load with substantial sharing. A trace-based simulation shows
that a modest reconciliation interval of 15 seconds can elimi-
nate 98% of all stale accesses. Furthermore, our traced clients
could collectively expect availability of five nines, even with
deferred propagation of updates.

1 Introduction

Mobile devices have become an indispensable part of
the computing infrastructure. However, networking costs
continue to render them second class citizens in a dis-
tributed file system. Limits imposed by networking costs
are not new, but they are no longer due to “last mile”
constraints. With the widespread deployment of broad-
band connectivity, mobile users often find themselves in
a neighborhood of good network performance. Unfor-
tunately, they must reach back across the wide area to

In Proceedings of the First USENIX Conference on File and Storage
Technologies, Monterey, CA, January 2002.

interact with their file servers; the latency and conges-
tion along such paths impose a substantial performance
penalty.

To cope with increased costs, wide-area and mobile file
systems employ two techniques to limit their use of the
remote server. The first technique is caching. When
workloads have good locality and infrequent sharing,
caching can avoid most file fetches from the server.
The second technique is optimistic concurrency control.
Clients defer shipping updated files until time and re-
sources permit. Ideally, most updates will be overwritten
at the client, and need never be sent to the server.

Deferring updates improves performance, but harms
safety and visibility. An update is safe if it survives the
theft, loss, or destruction of the mobile client that created
it. Safety requires that the contents of an update reside
on at least one other host. An update is visible if every
other client in the system knows it exists. Visibility re-
quires that notification of an update reaches all replicas
in the system.

Current file systems needlessly combine safety and vis-
ibility by propagating the contents of an update, im-
plicitly notifying the destination that the update exists.
Fluid Replication separates the concerns of safety and
visibility through the addition of secondary replica sites.
These sites, called WayStations, act as server replicas
to nearby clients, servicing uncached reads and writes.
Client writes are propagated to a WayStation immedi-
ately, providing safety. WayStations periodically rec-
oncile their updates with the servers for which they act
as replicas; this exchanges update notifications, but not
the contents of those updates. Since reconciliation in-
volves only meta-data, it can be done frequently, provid-
ing bounded visibility. Put another way, Fluid Replica-
tion aggressively writes updates back to the WayStation,
but periodically invalidates updates between WayStation
and server.

To maintain a simple consistency model, Fluid Replica-
tion provides copy semantics; each replica behaves as if a
reconciliation actually copied all new versions accepted
by the other replica. To support this, each WayStation re-



tains file versions in escrow in the event that they are ref-
erenced at other replicas. Escrow also allows us to pro-
vide wait-free reconciliations with no additional mecha-
nism.

We have built a prototype of Fluid Replication, and eval-
uated it with a variety of benchmarks. Updates are iso-
lated from wide-area networking costs in the absence of
sharing; clients pay wide-area costs only for accesses to
shared files. A trace-based simulation of Fluid Replica-
tion shows that a modest reconciliation interval of fif-
teen seconds provides a stale access rate of only 0.01%,
compared to a sharing rate of 0.6%. Space devoted to es-
crow storage is modest but bursty, with a high water mark
of less than 10 MB. The impact of deferred propagation
on availability is also small; our traced client population
would expect to see one failed access per year, collec-
tively.

2 Related Work

A number of projects have explored file systems for mo-
bile, wide-area clients. Many of the ideas in Fluid Repli-
cation stem from the Coda file system. Coda provides
high availability through disconnected operation [13]
for clients and server replication [16] between well-
connected servers. Fluid Replication is orthogonal to
both; we do not expect clients to avoid disconnection or
server failure. Coda also supports weakly-connected op-
eration [18] to utilize low bandwidth between a client and
its servers. During weakly-connected operation, Coda
clients defer updates, and ship them later through a pro-
cess called trickle reintegration. This sends both the
knowledge of an update and its contents to the server.
Since this is expensive, Coda defers reintegration in the
hopes that some updates will be canceled by overwrites
or deletions. This aging window is set to ten minutes to
capture an acceptable fraction of possible optimizations,
trading network bandwidth for more aggressive propaga-
tion.

Ficus [9, 23] shares Coda’s goal of providing optimistic
file access, but uses a peer-to-peer architecture. Each up-
date is accepted by a single replica and asynchronously
propagated to other sites, but no effort is made to ensure
that update messages arrive. To propagate missed up-
dates, Ficus provides copy semantics through the actual
exchange of updates between two replicas. Updates are
discovered by a disk scan at each replica, a heavyweight
process. Reconciliation exchanges both knowledge and
content of updates. Since this is expensive, it is intended
only for well-connected peers, making visibility depen-
dent on the mobility pattern of clients.

Bayou [26] provides optimistic concurrency control for
database applications, where distributed updates are
eventually committed by a primary replica. Deno [11]

extends the Bayou model to provide distributed commit.
These systems exchange full update sets whenever con-
venient. Unlike Ficus, they log updates; unlike Coda, up-
dates are represented by-operation rather than by-value.
This inherently combines notification of an update and
its contents. However, since databases exhibit many fine-
grained, partial updates, this may be less of an issue than
for file systems. Exchanges between peers rely on client
mobility and communication patterns. So, these systems
can offer eventual visibility, but cannot bound the time
required to do so.

OceanStore [15] advocates an architecture for global
storage. Like Fluid Replication, it envisions storage sup-
ported by a loose confederation of independent servers.
A primary focus of OceanStore is safely using untrusted
nodes in the infrastructure. This is also an important
problem for Fluid Replication, which we address else-
where [20]. OceanStore’s consistency mechanism, like
that of Ficus and Bayou, is based on epidemic algo-
rithms, and so cannot bound visibility. OceanStore rep-
resents updates by operation rather than by value, com-
bining notification of updates with the shipment of their
contents.

TACT [33] provides a middleware service to coordi-
nate the consistency of data used by wide-area appli-
cations. Unlike Fluid Replication, it combines visibil-
ity and safety of updates. However, it does provide
strong bounds on visibility. In addition to temporal
bounds—which are offered by Fluid Replication—it can
also bound the number of unseen writes or the weight of
those writes. Combining Fluid Replication’s separation
of safety and visibility with TACT’s mechanisms to trig-
ger reconciliation can offer applications a tunable con-
sistency mechanism with isolation from wide-area net-
working costs.

xFS is a file system designed for tightly coupled clus-
ters of workstations [1]. However, early designs focused
on the wide area [31]. In this model, clients were ag-
gregated based on physical proximity, and served by a
consistency server. On update, a client would retain the
contents of the update—reducing safety—and notify the
consistency server that the update occurred. Consistency
between these second-level replicas and the main stor-
age server was to be managed conservatively, imposing
wide-area networking costs on normal operation.

Finally, JetFile [8] is motivated by the same concerns
as the early xFS design, though it provides a number
of additional features. It uses a central version server
that provides serialization, but does not hold data; ob-
jects are stored primarily on the client that creates them,
reducing safety. Clients locate files with scalable reliable
multicast [7]. As in Ficus, invalidations are sent best-
effort. However, in JetFile, the central version server



broadcasts invalidations periodically to ensure bounded
consistency; this period provides consistency equivalent
to Fluid Replication. JetFile’s most serious drawback is
that it depends on ubiquitous IP multicast.

3 Design

This section presents the design of Fluid Replication with
an eye towards separating the concerns of safety and vis-
ibility. Clients treat WayStations, wide-area replica sites,
exactly as they would a server. Each WayStation rec-
onciles its updates with the server periodically; recon-
ciliation exchanges notification of updates, but not their
contents. In order to provide copy semantics without ac-
tually copying during reconciliation, replicas hold recon-
ciled updates in escrow. Due to the escrow mechanism,
reconciliation does not require any node to hold a lock
during a network round trip.

3.1 Context

Fluid Replication is designed to complement a client-
server architecture, such as that of AFS [10]. In the
AFS model, servers provide the centralized point of ad-
ministration. They are expected to be carefully main-
tained to provide the best possible availability to their
clients. Clients consist of workstations and mobile de-
vices. Clients are considered the property of their users;
they are not carefully administered and are much more
likely to fail. This is particularly true of mobile clients.

The AFS model uses callbacks for consistency. Before
using an uncached file, a client must first fetch it from
the server. As a side effect of the fetch, the server estab-
lishes a callback on that file. The client can then use the
now-cached copy. If a client modifies a file, the new ver-
sion is sent to the server on close; this is called a store
event. The server breaks callback on any other clients
caching this file, invalidating their copies, before accept-
ing the store. Unix semantics forbids invalidation of an
open file; such files are invalidated after they are closed.
If a file subject to pending invalidation is modified, the
close returns an error.

3.2 WayStations: Hosting Replicas

The success of Fluid Replication depends on WaySta-
tions, which act as replicas for servers. They provide
caching and immediate safety to nearby clients without
penalizing performance, and act as reconciliation part-
ners with remote servers. A WayStation is able to host
replicas of any service for any client, regardless of ad-
ministrative domain, and can host replicas of multiple
servers concurrently.

In our architecture, WayStations play a role similar to
that of servers; one model for a WayStation is as a fee-
based service, much as broadband connectivity is for

travelers today. In contrast to clients, they are care-
fully administered machines, and are relatively perma-
nent members of the infrastructure. While they can be
independently created, they are not expected to be tran-
sient. For example, a file server could also provide
WayStation services to foreign clients. However, an end-
user machine is not an appropriate WayStation because
it may be turned off or disconnected at any time.

The decision of whether or not to use a WayStation is
client-driven. Clients estimate the quality of the network
between themselves and their current replica site [12]. If
the network quality becomes poor, the client looks for
a WayStation close enough to improve matters, and ini-
tiates a replica on it. Such searches are carried out in
a neighborhood near the client through a process called
distance-based discovery [19]. The WayStation informs
the server of initiation. This notification is the point at
which the invalidation semantics on a client change. It is
an expensive operation, but it enables the server to drop
any outstanding callbacks for this client. Requiring call-
back breaks for wide-area clients would substantially pe-
nalize local-area clients.

The WayStation fetches objects on demand. We consid-
ered prefetching, but rejected it. It is not clear that in-
ferred prefetching [17] can provide requests in time to be
useful given wide-area delays. We are also unwilling to
require that applications disclose prefetch requests [24].

Foreign clients must trust WayStations to hold cached
files securely and reconcile updates promptly. While one
cannot prevent WayStation misbehavior completely, we
plan to provide mechanisms to prevent exposure and reli-
ably detect data modification or repudiation of accepted
updates. This allows WayStation/client relationships to
be governed by a contract. Parties to a contract are not
prevented from breaching it; rather, the contract specifies
penalties and remedies in the event of a breach. The de-
tails of our security architecture are beyond the scope of
this paper [20]. We comment further on it in the context
of future work in Section 6.

3.3 Reconciliation: Managing Replicas

Once a client has selected a WayStation, that WayStation
is treated as the client’s file server. Clients cache files
from WayStations, which manage callbacks for those
clients. Dirty files are written back to WayStations
on close. WayStations maintain update logs using a
mechanism similar to Coda’s client modify log [13]. It
contains file stores, directory operations, and meta-data
updates. Redundant log records are removed via cancel-
lation optimizations.

The server maintains an update log whenever one or
more WayStations hold replicas of that server. The server
also tracks which files are cached at the WayStation,



called the interest set. The bookkeeping for interest sets
is similar to that for callbacks, but the information is used
only during reconciliation.

Periodically, each WayStation reconciles its update log
with that of the server, exposing the updates made at
each replica to the other one. To initiate a reconciliation,
the WayStation sends the server its update log plus a list
of files the WayStation has evicted from its cache. The
server removes the latter from the WayStation’s interest
set, and checks each WayStation log record to see if it is
serializable. If it is, the server invalidates the modified
object, and records the WayStation as the replica holding
that version.

The server responds with a set of files to invalidate, and
a set of files that are now in conflict, if any. The invalida-
tion set consists of any updates accepted by the server—
whether from a client or through another WayStation—
that also reside in the WayStation’s interest set. Since the
WayStation will invalidate them, the server can remove
them from the interest set as well.

WayStations truncate their update logs on successful
reconciliation. However, since the server maintains a
merged log of all replica sites, it cannot truncate its log
immediately. The server maintains the last reconciliation
time for each WayStation holding a replica; let toldest

be the earliest such time. The server need only hold log
records from toldest forward, since all older records have
already been seen by all WayStations. Slow WaySta-
tions can force the server to keep an arbitrarily large log.
This policy is in contrast to that taken by Coda’s im-
plementation of optimistic server replication. In Coda,
only the tails of large update logs are retained; objects
with discarded log records are marked in conflict and
will need manual repair. Given Coda’s presumption of
tightly-coupled and jointly-administered replicas, this is
an appropriate design choice. However, since WaySta-
tions are administered by independent entities, it would
be unwise to allow a WayStation’s absence to necessitate
many manual repairs.

If each WayStation reconciles at a constant rate, all up-
dates are globally visible within twice the longest recon-
ciliation period. The first reconciliation invalidates the
server copy, and all other WayStation copies are invali-
dated during the next round. In order to provide clients
with well-bounded visibility, reconciliation must be a
lightweight operation. This is why reconciliations ex-
change only notification of updates, not their contents.
Because sharing is rare, aggressively exchanging file
contents increases reconciliation time without improv-
ing client access time. Leaving shared accesses to pay
the full cost of wide-area network delays preserves per-
formance, safety, and visibility for common-case opera-
tions.

fetch A
fetch A, B

reconcile

Server WS 2WS 1

read B'

read A

update B->B'

update A->A'

reconcile

fetch B'

This figure shows how fetching the most recent version
of a missing file can result in the propagation of out-of-
order updates. WayStation 2 updates A then B. WaySta-
tion 1 sees the update to B first, because A had already
been cached without an intervening reconciliation.

Figure 1: Propagating Updates Out-Of-Order

3.4 Escrow: Providing Copy Semantics

When a replica site needs the contents of an invalidated
file, what version does it obtain? The simplest approach
would be to provide the most recent version at the time
it is requested; we call this last-version semantics. Un-
fortunately, last-version semantics allow WayStations to
see updates out of order. Instead, Fluid Replication’s
copy semantics guarantees that updates are seen in the
order they are made. We believe this is important, as
other studies have shown that users do not always under-
stand the implications of complicated consistency mech-
anisms [6].

Figure 1 illustrates how out-of-order updates can arise
under last-version semantics. There are two files, A and
B, shared by clients at two WayStations, WS1 and WS2.
Assume that WS1 caches A, and WS2 caches both A and
B. Suppose that a client at WS2 updates A then B, and
then reconciles. The server now knows about both new
versions held at WS2. If a client at WS1 were to refer-
ence both files A and B without an intervening recon-
ciliation, it would see the old version of A but the new
version of B. When WS1 eventually reconciles, the up-
date of A would be known, but it would have been seen
out of order.

One solution would be to require clients to fetch all up-
dated objects of interest whenever fetching any. Fluid
Replication eschews this approach, as it would result in
more work across the wide-area path between WaySta-
tion and server. Instead, we appeal to copy semantics.



Under copy semantics, WS1 would have read B rather
than B′, because B was the current version when WS1

last reconciled. This is despite the fact that B was not in
WS1’s cache and the update, B′, had already been rec-
onciled by WS2. Copy semantics guarantees that each
WayStation see a complete prefix of all activity at each
WayStation, and therefore provides a consistent view of
the system. It is important to note that providing copy
semantics does not group related updates into atomic ac-
tions. In other words, copy semantics cannot prevent
seeing one update but not a related one. However, all
such mis-matches will be explicable in reference to “real
time”. In Bayou’s terminology, this provides monotonic
writes [30].

To provide copy semantics to a WayStation requesting a
file, Fluid Replication must supply the version known to
the server at the WayStation’s last reconciliation. This
version may reside on the server directly, or it may re-
side on the WayStation that had accepted it. Therefore,
a replica site that makes an update visible to another via
reconciliation must retain a copy of the update for as long
as the other replica might refer to it. We say that such
copies are held in escrow.

If a client at the server refers to a version escrowed at
some WayStation, the server back-fetches it; responsibil-
ity for the escrowed version passes from WayStation to
server. If a client at another WayStation references it, the
fetch request is first sent to the server. The server ob-
tains it from the escrowing WayStation—back-fetching
as before—and then forwards it on to the requesting
WayStation. Responsibility for escrow always migrates
from a WayStation to the server, never the reverse.

For escrow to be practical, we must prevent unbounded
storage growth. To see how this might occur, consider a
WayStation at which a file is updated between each rec-
onciliation. Without knowing which versions are visible
to other replica sites, the WayStation would be forced to
hold all of them. The key to managing this growth is to
observe that only the most recent version visible to each
replica need be held in escrow. Any other versions are
said to be irrelevant, and can be safely pruned.

A simple way to prune versions is to track which are old
enough to be globally irrelevant. Recall that toldest is
the latest time after which all WayStations have recon-
ciled successfully. Sending this time to a WayStation
during a reconciliation allows the WayStation to prune
old versions. Let f1 . . . fn be the sequence of updates to
some file f at a WayStation that were reconciled with the
server. Let fi be the most recent of those updates per-
formed before toldest. Clearly, all versions f1 . . . fi−1

are irrelevant; each WayStation would request either fi

or some later version.

If all WayStations reconcile at the same rate, each
WayStation must keep at most one additional version of
a file in escrow. This is because each new reconcilia-
tion would find that toldest had advanced past the time
of that WayStation’s last reconciliation. A version enters
escrow only when a more recent version is created; af-
ter reconciliation, toldest advances past the new version,
rendering the old one irrelevant. Note that this scheme
allows some versions of a file stored at WayStations to
be discarded without ever being sent to the server. How-
ever, the toldest mechanism guarantees that no replicas
still hold an active reference to that version.

While this pruning is helpful, it does not prevent the pos-
sibility of unbounded escrow space. Consider what hap-
pens if one WayStation is slow to reconcile. This single
WayStation prevents the advancement of toldest, requir-
ing the retention of all future versions at each WaySta-
tion. In effect, a single WayStation can hold all others
hostage. So, instead of sending only toldest, the server
sends a sorted list of timestamps toldest . . . tnewest,
where each entry lists the time of last reconciliation by
some WayStation. If two or more visible versions lie be-
tween adjacent timestamps, only the last one is needed.
Under this scheme, a slow-to-reconcile WayStation re-
quires only one additional copy in escrow.

The escrow mechanism depends on the fact that WaySta-
tions are closer in spirit to servers than they are to clients.
Because they hold versions in escrow for other replicas,
they must be reasonably available. An alternative de-
sign for Fluid Replication allows a client to act as its
own WayStation. While this approach would be simpler,
it can leave escrowed copies unavailable to other sites.
End-user machines are often unavailable for days at a
time, and may even disappear completely [4].

Under escrow, file updates can reside on WayStations
indefinitely. One could argue that this is proper; if an
update is never needed elsewhere, it should never be
shipped from the WayStation. However, there are two
reasons to ship versions in advance of need. First, ad-
ministrative tasks such as backup are greatly simplified
if files eventually migrate to the server. Second, migra-
tion limits the risk of unavailable escrowed copies and
data loss. Therefore, any version that has not been up-
dated for one hour is sent to the server. We chose one
hour to take advantage of most cancellation opportuni-
ties [18], while balancing propagation overhead with the
need for availability.

It is important to note that copy semantics cannot guar-
antee in-order updates if those updates are destined for
more than one server. This is because there is no com-
mon synchronization point. A WayStation could provide
this guarantee through synchronous, atomic reconcilia-
tions across all of its servers. However, such steps in-



WayStation Server

updates

invalidations,

prepare xaction
W

ay
S

ta
tio

n 
Lo

ck
ed

,
C

an
 A

bo
rt



(a) bilateral reconcliation

commit xaction

S
erver Locked,
C

annot A
bort

WayStation Server

updates,

confirm last recon.

invalidations,

confirm
 WS->SA

ss
um

e 
S

uc
ce

ss


B
eg

in
 E

sc
ro

w


(b) unilateral reconcliation

A
ssum

e S
uccess

B
egin E

scrow


This figure illustrates the difference between bilateral and unilateral reconciliations. Bilateral reconciliations require
three messages. Each replica must be locked during an expensive round trip, and WayStation failures can hold the
server hostage. In contrast, unilateral reconciliations optimistically assume that exposures are successful, and begin
escrow immediately. They require two messages rather than three, employ only short-term, local locks, and hold no
replicas hostage to failure.

Figure 2: The Advantage of Unilateral Reconciliations

troduce wide-area latencies into the critical path of op-
erations, counter to Fluid Replication’s philosophy. Al-
ternatively, the servers could synchronize amongst them-
selves, but with similar drawbacks. We expect that most
users will have one ”home” file system, obtaining the
benefit of in-order updates while paying only the small
cost of local escrow.

3.5 Fault Tolerance in Reconciliation

The simplest model for reconciliation is bilateral: the
atomic exchange of all update log records between a
WayStation and a server. Unfortunately, this simple
model is problematic in the face of node or network fail-
ures. Atomic exchanges require a two-phase commit
protocol. One node must prepare the transaction, agree-
ing to either commit or abort until the other party con-
firms the result. In the meantime, the prepared node must
block many operations until the transaction completes.

The difficulty is caused by store operations during a bi-
lateral reconciliation. These stores cannot be serialized
before the reconciliation. Doing so would require that
they had been in the reconciled update log, which is im-
possible. The stores cannot be serialized after the rec-
onciliation either, since they may refer to a file that the
reconciliation will invalidate. Therefore, store operations
issued during a bilateral reconciliation must block until
it completes. In the presence of failures, stores may be
blocked indefinitely. Put another way, bilateral recon-
ciliation imposes wide-area networking costs on clients
even in the absence of sharing; this runs counter to Fluid
Replication’s philosophy.

In light of these problems, we split a single, bilateral
reconciliation into two unilateral ones. These alterna-
tives are illustrated in Figure 2. WayStations initiate rec-
onciliations, as before. However, as soon as the rec-
onciliation message is sent, the WayStation assumes it
will be received successfully. It can continue processing
client requests immediately, placing versions in escrow
as needed. The server likewise assumes success and be-
gins escrow after sending its message. As a side effect,
the server’s message confirms the exposures assumed by
the WayStation. The next WayStation request confirms
the completion of the prior reconciliation.

There are several benefits to this approach. WaySta-
tions block updates only while computing a reconcil-
iation message; no locks are held across expensive
round trips. This appeals to the common case by plac-
ing potentially-visible versions in escrow immediately,
rather than waiting for confirmation. Since the escrow
mechanism is needed to provide copy semantics, no ad-
ditional complexity is required. Finally, the third rec-
onciliation message—required to keep bilateral locking
times short—is implied by future messages. This piggy-
backing is similar to the process Coda uses to manage
updates to well-connected, replicated servers [27]. Un-
like Coda’s COP2 messages, confirmation of reconcilia-
tions can be deferred indefinitely. The only penalty of an
undetected failure is a larger escrow.

Unilateral reconciliations provide a good approximation
to the desired effect of bilateral ones. The server sees a
single, atomic event, while WayStations are able to al-



low clients to continue during the wide-area operation.
In addition to a potential increase in escrow size, there
is a slight widening of the conflict window, because con-
current writes are now allowed. Suppose that a WaySta-
tion initiates a reconciliation, then accepts an update to
file f that is later invalidated by the server. This causes
f to be in conflict. With bilateral reconciliation, the up-
date to f would have been delayed until after invalidation
and then rejected, avoiding a conflict. However, given
the low incidence of write-shared files—particularly over
such short time frames—it is unlikely that such spurious
conflicts will occur in practice.

4 Implementation

Our Fluid Replication prototype consists of three com-
ponents: a client cache manager, a server, and a WaySta-
tion. Each of these components is written primarily in
Java. There are several reasons for this, foremost among
them Java’s clean combination of thread and remote pro-
cedure call abstractions and the benefits of writing code
in a type-safe language.

The bulk of the Fluid Replication client is implemented
as a user-level cache manager, supported by a small,
in-kernel component called the MiniCache [29]. The
MiniCache implements the vnode interface [14] for Fluid
Replication. It services the most common operations for
performance, and forwards file operations that it cannot
satisfy to the user-level cache manager.

Calls are forwarded from the kernel to the cache man-
ager across the Java Native Interface, JNI. The calls are
then satisfied by one of a set of worker threads, either
from the local disk cache or via Remote Method Invoca-
tion, RMI, to the appropriate replica. Fluid Replication
uses write-back caching; a close on a dirty file completes
in parallel with the store to the replica. The client sup-
ports dynamic rebinding of servers and WayStations for
migration; currently, our prototype migrates only on user
request.

WayStations and servers share much of the same code
base, since their functionality overlaps. Data updates are
written directly to the replica’s local file system. Meta-
data is stored in memory, but is kept persistently. Up-
dates and reconciliations are transactional, but we have
not yet implemented the crash recovery code. We use
Ivory [2] to provide transactional persistence in the Java
heap; used in this way, it is similar to RVM [28].

The decision to write the client in Java cost us some per-
formance, and we took several steps to regain ground.
Our first major optimization was to hand-serialize RMI
messages and Ivory commit records. The default RMI
skeleton and stub generator produced inefficient serial-
ization code, which we replaced with our own. This re-
duced the cost of a typical RMI message by 30%.

The second major optimization concerned the crossing
of the C-Java boundary. Each method call across this
boundary copies the method arguments onto the Java
stack, and returned objects must be copied off of the Java
stack. We were able to avoid making these copies by us-
ing preserialized objects, provided by the Jaguar pack-
age [32]. Jaguar allows objects to be created outside the
Java VM, and still be visible from within. We used this
to pass objects, copy-free, between our C and Java code.

5 Evaluation

In evaluating Fluid Replication, we set out to answer the
following questions:

• Can Fluid Replication insulate clients from wide-
area networking costs?

• What is the impact of sharing on performance?
• How expensive is reconciliation?
• Can Fluid Replication provide the consistency ex-

pected by local-area clients to those in the wide
area?

• How does escrow affect availability?
• What are the storage costs of escrow?

These questions concern the performance seen by indi-
vidual clients and the behavior of the system as a whole.
To measure client performance, we subjected our pro-
totype to a set of controlled benchmarks. We explored
system behavior through the use of trace-based simula-
tion.

Our benchmarks ran on the testbed depicted in Fig-
ure 3. The WayStations are connected to the server via
a trace modulated network. Trace modulation performs
application-transparent emulation of a slower target net-
work over a LAN [22]. We have created modulation
traces that emulate the performance of a variety of dif-
ferent wide-area networking scenarios, listed in Table 1.
Latency numbers in these traces are in addition to base-
line latency, while bandwidth specifies the bottleneck ca-
pacity. All testbed machines run the Linux 2.2.10 kernel.
The server and WayStations have 550 MHz Pentium III
Xeon Processors, 256 MB of RAM, and 10K RPM SCSI
Ultra Wide disks. The clients are IBM ThinkPad 570s;
these machines have 366 MHz mobile Pentium IIs with
128 MB of memory.

For the trace-based studies, we collected traces com-
prising all activity on a production NFS server over
one week. This server holds 188 users’ home directo-
ries, plus various collections of shared data, occupying
48 GB. The users are graduate students, faculty, and staff
spread throughout our department. They come from a
variety of research and instructional groups, and have di-
verse storage needs. Generally speaking, the clients are
not mobile, so they may not be wholly representative of



WayStation WayStationServer with
Trace Modulation

Client Client

Single Client Two Clients (Sharing)

This figure illustrates our benchmarking topology. Each
client is well connected to its WayStation, but traffic be-
tween a WayStation and the server is subject to trace
modulation.

Figure 3: Benchmark Topology

Scenario Latency (ms) Bandwidth
local area 0.0 10 Mb/s
small distance 15.0 4 Mb/s
medium distance 33.5 3 Mb/s
large distance 45.0 1 Mb/s
intercontinental 55.0 1 Mb/s
low bandwidth 0.0 56 Kb/s
high latency 200.0 10 Mb/s

This table lists the parameters used in each of our trace
modulation scenarios. The local area scenario is the
baseline against which we compare. The next four were
obtained by measuring small ping and large ftp per-
formance to four different sites. Bandwidth numbers are
increased over ftp throughput by 20% to account for
the difference in metric. The last two are used only to
determine trends as latency or bandwidth worsen, and
modify parameters orthogonally. Latencies are one-way;
bandwidths are symmetric.

Table 1: Trace Modulation Parameters

our target domain. However, prior studies suggest that,
at the operation level captured by our traces, mobile and
desktop behavior are remarkably similar [21].

Traces were collected using tcpdump on the network
segment to which the server was attached. These packet
observations were then fed into the nfstrace tool [3],
which distilled the traces into individual fetch and store
operations. Note that this tool does not record operations
satisfied by a client’s cache. However, since NFS clients
do not use disk caches, this will overstate the amount
of read traffic a Fluid Replication client would generate.
For the purposes of our analyses, we assume that each
client host resides on a separate WayStation. The traces
name 84 different machines, executing 7,980 read oper-
ations and 16,977 write operations. There are relatively
few operations because most of our client population did
not materially contribute to the total. Seven hosts ac-
count for 90% of all requests, and 19 hosts account for
99% of all requests.

5.1 Wide-Area Client Performance

How effectively does Fluid Replication isolate clients
from wide-area networking costs? To answer this ques-
tion, we compare the performance of Coda, AFS, and
Fluid Replication in a variety of networking conditions.
For Coda, we ran Coda 5.3.13 at the server and the client.
For AFS, we used OpenAFS, a descendant of AFS 3.6,
as the server, and Arla 0.35.3 as the client. To provide a
fair comparison, we set up our Coda volume on a single
server, rather than a replicated set.

Our benchmark is identical to the Andrew Bench-
mark [10] in form; the only difference is that we use the
gnuchess source tree rather than the original source tree.
Gnuchess is 483 KB in size; when compiled, the total
tree occupies 866 KB. We pre-configure the source tree
for the benchmark, since the configuration step does not
involve appreciable traffic in the test file system. Since
the Andrew Benchmark is not I/O-bound, it will tend
to understate the difference between alternatives. In the
face of this understatement, Fluid Replication still out-
performs the alternatives substantially across wide-area
networks.

We tested each file system with both cold and warm
caches. In the case of AFS and Coda, a “warm cache”
means that the clients already hold valid copies of the
gnuchess source tree. In the case of Fluid Replication,
the source tree is cached on the WayStation.

Figures 4 compares the total running times of the Fluid
Replication, Coda, and AFS clients under different net-
work environments. Figure 4(a) gives the performance
with a cold cache, and Figure 4(b) shows it with a warm
cache. Each experiment comprises five trials, and the
standard deviations are less than 2% of the mean in all
cases.

With a cold cache and a well-connected server, Coda
and AFS outperform Fluid Replication. We believe this
is due to our choice of Java as an implementation lan-
guage and the general maturity level of our code. We see
no fundamental reason why Fluid Replication’s perfor-
mance could not equal Coda’s. They have identical client
architectures, and the client/WayStation interactions in
Fluid Replication are similar to those between client and
server in Coda.

As the network conditions degrade, the cold-cache times
of Coda and AFS rapidly increase while those of Fluid
Replication increase slowly. All systems must fetch
source tree objects from the server, and should pay simi-
lar costs to do so. The divergence is due to the systems’
different handling of updates. In Fluid Replication, all
updates go only to the nearby WayStation. In Coda and
AFS, however, updates must go across the wide area to
the server.



Network

local small medium large intercontinental

T
ot

al
 T

im
e 

(s
)

0

20

40

60

80

100

120
fr-cold
coda-cold
afs-cold

(a) cold cache

Network

local small medium large intercontinental

T
ot

al
 T

im
e 

(s
)

0

20

40

60

80

100

120
fr-warm
coda-warm
afs-warm

(b) warm cache

This figure compares the total running times of Coda,
AFS and Fluid Replication under a variety of network
environments. The upper figure gives the results for a
cold cache, and the lower figure shows them for a warm
cache. With a cold cache, Fluid Replication is least af-
fected by network costs among three systems. With a
warm cache, the performance of Fluid Replication does
not appreciably degrade as network costs increase.

Figure 4: Client Performance

With a warm cache, the total running time of Fluid Repli-
cation remains nearly constant across all network envi-
ronments. This is because the updates are propagated
only to the WayStation; invalidations are sent to the
server asynchronously. The running time of AFS and
Coda increases as the network degrades. They must
propagate updates to the server during the copy phase
and write object files back to the server during the make
phase. The Coda client never entered weakly-connected
mode, since the bandwidths in our sample traces were
well above its threshold of 50 KB/s. Had Coda entered
weakly-connected mode, its performance would be iden-
tical to Fluid Replication’s, but its updates would be nei-
ther safe nor visible for many minutes.

Table 2 shows the normalized running time of Fluid
Replication, with the local-area case serving as the base-
line. While the running time increases by as much as
24.1% when the cache is cold, it remains nearly constant
when the cache is warm. Looking only at the four scenar-
ios generated by ping and ftp experiments, there ap-

Trace Cold Warm
Small 1.040 1.007
Medium 1.103 1.012
Large 1.200 1.013
Intercontinental 1.241 1.020
Low Bandwidth 1.014
High Latency 1.007

This figure shows the normalized running time for Fluid
Replication over each of the networking scenarios in Ta-
ble 1. The local-area case served as the performance
baseline in each case. When the WayStation cache is
cold, performance decreases as wide-area networking
costs increase. However, no consistent trend exists when
the WayStation cache is warm.

Table 2: Fluid Replication over Wide-Area Networks

pears to be a slight growth trend, but it is within observed
variance. Only the results for Small and Intercontinental
are not identical under the t-test; all other pairs are sta-
tistically indistinguishable. To conclusively rule out a
true trend, we also ran the warm-cache Fluid Replication
experiment across two more-demanding networking sce-
narios. The first decreased bandwidths to 56 Kb/s, but
added no additional latency. The second increased one-
way latency to 200 ms, but placed no additional band-
width constraints. In both cases, Fluid Replication’s run-
ning time was less than that for the Intercontinental trace.
Therefore, we conclude that that Fluid Replication’s up-
date performance does not depend on wide-area connec-
tivity. Of course, this is due to deferring the work of up-
date propagation and the final reconciliation — neither of
which contribute to client-perceived performance. Sec-
tions 5.4 and 5.5 quantify any reduction in consistency
or availability due to deferring work.

5.2 Costs of Sharing

Our next task is to assess the potential impact that de-
ferred propagation has on sharing between wide-area
clients. We devised a benchmark involving two clients
sharing source code through a CVS repository. In the
benchmark, clients C1 and C2 are attached to WaySta-
tions W1 and W2, respectively. In the first phase, C1
and C2 each check out a copy of the source tree from
the repository. After changing several files, C1 commits
those changes to the repository. Finally, C2 updates its
source tree. Both the repository and working copies re-
side in the distributed file system. When the benchmark
begins, both clients have the repository cached.

We used the Fluid Replication source tree for this bench-
mark. The changes made by C1 are the updates made
to our source tree during the four of the busiest days
recorded in our CVS log. At the beginning of the trial,
the source tree consists of 333 files totaling 1.91 MB.



Network

local small medium large intercontinental

T
im

e 
(s

)

0

10

20

30

40

50
fr-commit
coda-commit
afs-commit

(a) commit

Network

local small medium large intercontinental

T
im

e 
(s

)

0

10

20

30

40

50
fr-update
coda-update
afs-update

(b) update

Our sharing benchmark replayed sharing from the CVS
log of our Fluid Replication source tree. The benchmark
consisted of five phases: a checkout at C1, a checkout at
C2, an edit at C1, a commit at C1, and an update at C2.
This figure shows the time to complete the commit and
update phases for AFS, Coda, and Fluid Replication.

Figure 5: Sharing Benchmark

The committed changes add four new files, totaling seven
KB, and modify 13 others, which total 246 KB. We re-
ran this activity over the two-client topology of Figure 3.
Figure 5 shows our results for the commit and update
phases, run over Fluid Replication, AFS, and Coda; each
bar is the average of five trials. We do not report the
results of the checkout and edit phases, because they ex-
hibit very little sharing.

Unsurprisingly, the cost of committing to the repository
was greater for AFS and Coda than for Fluid Replication.
This is because Fluid Replication clients ship updates to
a nearby WayStation. AFS and Coda must ship data and
break callbacks over the wide area.

What is surprising is that the update phase is also more
costly for AFS and Coda. One would think that Fluid
Replication would perform poorly, since file data has to
traverse two wide area paths: from the first WayStation
to the server, and then to the second WayStation. The un-
expected cost incurred by AFS and Coda stems from the
creation of temporary files. The latter are used to lock the
repository and back up repository files in case of failure.

WayStations are able to absorb these updates, and later
optimize them away, since they are all subject to cancel-
lation. AFS and Coda clients, on the other hand, send
every update to the server. Furthermore, these updates
break callbacks on the far client.

It is important to note that hiding the creation of tempo-
rary locking files may improve performance, but it ren-
ders the intended safety guarantees useless. The best that
Fluid Replication can offer in the face of concurrent up-
dates is to mark the shared file in conflict; the users must
resolve it by hand. Coda would be faced with the same
dilemma if it had entered weakly-connected mode dur-
ing this benchmark. However, we believe that in prac-
tice, optimism is warranted. Even in the case of CVS
repositories, true concurrent updates are rare. Our own
logs show that commits by different users within one
minute occurred only once in over 2,100 commits. A
commit followed by an update by different users within
one minute happened twice.

This benchmark illustrates the cost of obtaining deferred
updates. However, in practice, these files are likely to
have migrated to the server. Our logs show that the me-
dian time between commits by different users was 2.9
hours, and that the median time between a commit and
an update by different users was 1.9 hours. This would
provide ample opportunity for a WayStation to asyn-
chronously propagate shared data back to the server be-
fore it is needed.

5.3 Reconciliation Costs

To be successful, Fluid Replication must impose only
modest reconciliation costs. If reconciliations are ex-
pensive, WayStations would be able to reconcile only in-
frequently, and servers could support only a handful of
WayStations. To quantify these costs, we measured rec-
onciliations, varying the number of log records from 100
to 500. To put these sizes in context, our modified An-
drew Benchmark reconciled as many as 148 log records
in a single reconciliation.

Figure 6 shows the reconciliation time spent at the server
as the number of log records varies; each point is the
average of five trials. This time determines the num-
ber of WayStations a server can handle in the worst case.
Server-side time increases to just under 1.1 seconds for
500 log records. In practice we expect the costs to be
much smaller. The week-long NFS trace would never
have generated a reconciliation with more than 64 log
records.

Figure 7 shows the total time for a reconciliation mea-
sured at a WayStation as the number of log records
varies. This includes the server-side time, RMI over-
heads, and network costs. The total reconciliation times
for the local area, small distance, and medium distance



Number of Log Records

0 100 200 300 400 500

T
im

e 
(s

)

0.2

0.4

0.6

0.8

1.0

1.2

This figure shows the reconciliation times spent at a
server as the number of log records varies. These times
determine the number of WayStations a server can han-
dle.

Figure 6: Reconciliation Time at Sever

Number of Log Records

0 100 200 300 400 500

T
im

e 
(s

)

0.5

1.0

1.5

2.0

2.5

3.0

3.5
intercontinental 
large 
medium
small
local

This figure shows the total reconciliation times in sec-
onds as the number of log records varies. These times
determine the upper limit on how frequently a WaySta-
tion can reconcile with the server. For all sizes, they are
much shorter than our default reconciliation period of 15
seconds.

Figure 7: Reconciliation Time at WayStation

traces do not vary significantly. This means that, at these
speeds, bandwidth is not the limiting factor. Profiling of
the reconciliation process suggests that RMI—even with
our hand-optimized signatures—is the rate-limiting step.
However, at 1 Mb/s, the bandwidth of the large distance
and intercontinental traces, the bottleneck shifts to net-
working costs. In any event, the reconciliation times are
much shorter than our default reconciliation period of 15
seconds, allowing the WayStation to reconcile more fre-
quently if sharing patterns warrant.

5.4 Consistency

The consistency offered by Fluid Replication depends on
two factors: the frequency of reconciliation and the time
between uses of a shared object. Section 5.3 quantified
the former. In this section, we address the incidence of
sharing observed in a real workload.

To determine how often sharing happens and the time

Time between Uses (minutes)

0.25 1 4 16 64 256 1024 4096

%
 o

f A
ll 

O
pe

ra
tio

ns

0

0.05

0.1

0.15

0.2

0.25
read-after-write
write-after-write

This figure shows the percentage of operations that
caused sharing. The x-axis shows the time between uses
of a shared objects in minutes, and the y-axis shows the
percentage of total operations that exhibited sharing. The
top part of bar shows the read-after-write sharing; the
bottom part shows the write-after-write. Only 0.01% of
all operations caused sharing within 15 seconds. Just
over 0.6% of all operations exhibited any form of shar-
ing.

Figure 8: Sharing

between shared references, we examined our week-long
NFS client traces. For this analysis, we removed refer-
ences to user mail spools from our traces. A popular mail
client in our environment uses NFS rather than IMAP
for mail manipulation. Many users run these clients on
more than one machine, despite NFS’s lack of consis-
tency guarantees [25], generating spurious shared refer-
ences. Since we would expect mobile users to use IMAP
instead, we excluded these references.

Figure 8 shows the percentage of all references to ob-
jects written previously at another replica site. The top
part of each bar shows read-after-write sharing, and the
bottom part shows write-after-write. As expected, shar-
ing is not common, especially over short periods of time.
Only 0.01% of all operations caused sharing within 15
seconds. The total fraction of references that exhibited
sharing during the week was just over 0.6% of all op-
erations. Note that these numbers are pessimistic, as we
have assumed that each client uses a distinct WayStation.
The graph shows some interesting periodic behavior; un-
fortunately, with network-level traces, we are unable to
identify the processes causing it.

5.5 Availability

Because WayStations do not propagate file contents to
the server immediately, a failed WayStation could keep
a client from retrieving a needed update. To gauge
how likely such a scenario might be, we fed our NFS
traces into a Fluid Replication simulator. We aug-
mented the trace with WayStation reconciliations and
failure/recovery pairs. Reconciliations were scheduled
every 15 seconds from the WayStation’s first appearance



0

1

2

3

4

5

6

7

8

9

10

1 2 3 4 5 6

M
B

yt
es

Days

This figure shows the size of global escrow. The x-axis
shows time in days from the beginning of the NFS trace,
and the y-axis shows size of escrow.

Figure 9: Global Escrow Size

in the trace. We assume a mean time to failure of 30 days
and a mean time to repair of one hour, both exponen-
tially distributed. These parameters were chosen to rep-
resent typical uptimes for carefully administered server
machines; they are the same as those used in the xFS
study [5]. Note that we did not model server failures; our
intent is to explore Fluid Replication’s additional contri-
bution to failures.

For each trial of the simulation, we varied the random
seed controlling failures and repairs. We then counted
the number of back-fetches that fail due to the unavail-
ability of a WayStation. We took over five million trials
of the experiment in order to provide reasonable confi-
dence intervals for a very small mean.

Recall that during our trace there were 24,957 total re-
quests made of the WayStations. Of those, 243 requests
required a back-fetch from one WayStation to another.
We first simulated Fluid Replication when updates that
had not been overwritten or back-fetched were propa-
gated by the WayStation after 1 hour. Across five mil-
lion trials, 187,376 requests failed, for an average of
1.46 × 10

−6 failures per operation, with a 90% confi-
dence interval of ±8.83× 10

−7; this is equivalent to five
nines’ availability. Expressed in time, we observed an
average of 0.037 failures per week, or roughly one failed
access every 27 weeks for our client population.

5.6 Costs of Escrow

Our final question concerns the storage costs of escrow.
To determine them, we fed the week-long NFS traces
into our simulator. Each WayStation in the trace recon-
ciles every 15 seconds from the moment it is first named,
as before. After an update has been reconciled, it is
marked eligible for escrow. Any subsequent write to the
file checks for this mark, and, in its presence, preserves

Escrow Size (byte)

1K 4K 16K 64K 256K 1M 4M 16M

N
um

be
r 

of
 R

ec
on

ci
lia

tio
ns

0

500

1000

1500

2000

2500

3000

3500

4000

4500 total reconciliations with non-empty escrows: 24843

This figure shows the distribution of non-empty escrow
sizes. The x-axis shows time in days from the beginning
of the NFS trace, and the y-axis shows the number of
reconciliations resulting in an escrow of that size or less.

Figure 10: Non-Empty Escrow Distribution

the old version in case it is needed. Updates are removed
from escrow as described in Section 3.4.

Figure 9 shows how global escrow size changes with
time. The x-axis plots days from the beginning of the
trace and the y-axis shows the size of escrow in MB.
Global escrow size was almost always zero, and never
exceeded 10 MB over the course of the week. The large
variance matches the burstiness expected of update ac-
tivity. Over the lifetime of our trace, WayStations col-
lectively handle over 280 MB; compared to this, escrow
requirements are modest.

Figure 10 gives a more detailed picture of escrow sizes
over time. This histogram plots reconciliations result-
ing in non-empty escrows, showing the frequency with
which each size was seen. Almost 89% of all non-empty
escrows are 2MB or smaller.

6 Future Work

There are three main tasks ahead of us. First, we plan
to use network estimation [12] and distance based dis-
covery [19] to automate the WayStation migration and
location processes. We have developed a technique that
estimates network performance along the path between a
client and a server using observations of request/response
traffic. This estimator, borrowing techniques from sta-
tistical process control, follows underlying shifts in net-
work performance while filtering out observed noise.
In effect, the estimator adapts its behavior to prevail-
ing networking conditions, selecting for agility or sta-
bility as appropriate. This estimator, combined with a
cost-benefit analysis of WayStation migration, guides the
search for a new replica site when the client moves too
far from the old one.

Our second task is to address the need for trust be-
tween clients and WayStations [20]. Before a client will
agree to use a WayStation, it must be assured of the pri-



vacy and integrity of cached data, and of non-repudiation
of updates. Preventing exposure through encryption is
straightforward, though managing keys can be subtle. It
is also easy to reliably detect unauthorized modifications
using cryptographic hashes. However, guaranteeing that
a WayStation will correctly forward updates is difficult,
if not impossible.

Rather than attempt to prove a WayStation trustworthy a
priori, we plan to provide a receipt mechanism that en-
ables a client to prove that a WayStation did not properly
forward an update. When a client ships a version of a
file to the WayStation, it receives a cryptographically-
signed receipt for that update. The client can later check
whether that version was properly reconciled; lack of
reconciliation provides evidence of update repudiation.
Receipts can be optimized away much as updates can,
but clients must retain the authority to apply such opti-
mizations. Furthermore, clients retain the latest version
of any updated file until that version is known to either
reside on the server or have been invalidated; the space
required to do so is modest [13]. This guarantees that
the latest version of a file is known to reside on either a
client or the server, in addition to any untrusted WaySta-
tion copies. Thus, a WayStation that disappears from the
system cannot take with it the only current version of a
file, though earlier, escrowed versions may vanish.

Our third goal is to gain more experience with Fluid
Replication and its use. While the NFS traces are in-
formative, they do not capture precisely how users will
use Fluid Replication. We plan to deploy a server in
our department for day-to-day storage requirements, and
provide users with WayStations and wireless gateways at
home. This will allow client laptops to seamlessly mi-
grate between locales, giving us valuable insights into
the system’s use.

7 Conclusion

As mobile clients travel, their costs to reach back to home
filing services change. To mask these performance prob-
lems, current file systems reduce either safety, visibility,
or both. This is a result of conflating safety and visi-
bility into a single mechanism. They have different re-
quirements, and so should be provided through different
mechanisms.

Fluid Replication separates the concerns of safety and
visibility. While traveling, a mobile client associates it-
self with a nearby WayStation that provides short-term
replication services for the client’s home file system. Up-
dates are sent to the nearby WayStation for safety, while
WayStations and servers frequently exchange knowledge
of updates through reconciliation to provide visibility.
Reconciliation is inexpensive and wait-free. WaySta-
tions retain copies of advertised updates in escrow until

they are irrelevant to other replica sites.

An analysis of traffic in a production NFS server vali-
dates our design decisions. A modest reconciliation in-
terval of fifteen seconds limits the rate of stale reads or
conflicting writes to 0.01%. Reserving 10 MB for es-
crow space—a small fraction of disk capacity—is suffi-
cient in the worst case. Measurements of a Fluid Repli-
cation prototype show that it isolates clients from most
wide-area networking costs. Update traffic is not affected
at bandwidths as low as 56 Kb/s or latencies as high as
200 ms. These gains offset increased sharing costs, even
for workloads with substantial degrees of sharing. Es-
crow space requirements are modest: at its peak, it is
less than 5% of the total data cached at WayStations. De-
spite the fact that update propagation is deferred, avail-
ability does not suffer. Our traced clients could expect
five nines’ availability.

References
[1] T. E. Anderson, M. D. Dahlin, J. M. Neefe, D. A. Patter-

son, D. S. Roselli, and R. Y. Wang. Serverless network
file systems. ACM Transactions on Computer Systems,
14(1):41–79, February 1996.

[2] G. C. Berry, J. S. Chase, G. A. Cohen, L. P. Cox, and
A. Vahdat. Toward automatic state management for dy-
namic web services. In Network Storage Symposium,
Seattle, WA, October 1999.

[3] M. Blaze. NFS tracing by passive network monitoring.
In Proceedings of the Winter 1992 USENIX Conference,
pages 333–343, Berkeley, CA, January 1992.

[4] W. J. Bolosky, J. R. Douceur, D. Ely, and M. Theimer.
Feasibility of a serverless distributed file system deployed
on an existing set of desktop PCs. In 2000 ACM SIG-
METRICS Conference on Measurement and Modeling of
Computer Systems, pages 34–43, Santa Clara, CA, June
2000.

[5] M. D. Dahlin, C. J. Mather, R. Y. Wang, T. E. Ander-
son, and D. A. Patterson. A quantitative analysis of cache
policies for scalable network file systems. In 1994 ACM
SIGMETRICS Conference on Measurement and Model-
ing of Computer Systems, pages 150–160, Nashville, TN,
May 1994.

[6] M. R. Ebling. Translucent Cache Management for Mo-
bile Computing. PhD thesis, School of Computer Science,
Carnegie Mellon University, Pittsburgh, PA, March 1998.

[7] S. Floyd, V. Jacobson, C. G. Liu, S. McCanne, and
L. Zhang. A reliable multicast framework for light-weight
sessions and application level framing. IEEE/ACM Trans-
actions on Networking, 5(6):784–803, December 1997.

[8] B. Gronvall, A. Westernlund, and S. Pink. The design
of a multicast-based distributed file system. In Proceed-
ings of the Third Symposium on Operating Systems De-
sign and Implementation, pages 251–264, New Orleans,
LA, February 1999.



[9] J. S. Heidemann, T. W. Page, R. G. Guy, G. J. Popek, J.-
F. Paris, and H. Garcia-Molina. Primarily disconnected
operation: Experience with Ficus. In Proceedings of
the Second Workshop on the Management of Replicated
Data, pages 2–5, November 1992.

[10] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M. J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51–81, February
1988.

[11] P. J. Keleher and U. Cetintemel. Consistency man-
agement in Deno. Mobile Networks and Applications,
5(4):299–309, 2000.

[12] M. Kim and B. D. Noble. Mobile network estimation. In
7th ACM Conference on Mobile Computing and Network-
ing, July 2001. to appear.

[13] J. J. Kistler and M. Satyanarayanan. Disconnected op-
eration in the Coda File System. ACM Transactions on
Computer Systems, 10(1):3–25, February 1992.

[14] S. R. Kleiman. Vnodes: An architecture for multiple file
system types in Sun UNIX. In USENIX Association Sum-
mer Conference Proceedings, pages 238–247, Atlanta,
GA, June 1986.

[15] J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski,
P. Eaton, D. Geels, R. Gummadi, S. Rhea, H. Weather-
spoon, W. Weimer, C. Wells, and B. Zhao. OceanStore:
An architecture for global-scale persistent storage. In
Proceedings of the Ninth International Conference on Ar-
chitectural Support for Programming Languages and Op-
erating Systems, pages 190–201, November 2000.

[16] P. Kumar and M. Satyanarayanan. Flexible and safe
resolution of file conflicts. In Proceedings of the 1995
USENIX Technical Conference, pages 95–106, New Or-
leans, LA, January 1995.

[17] H. Lei and D. Duchamp. An analytical approach to file
prefetching. In Proceedings of USENIX 1997 Annual
Technical Conference, pages 275–288, Anaheim, CA,
January 1997.

[18] L. B. Mummert, M. R. Ebling, and M. Satyanarayanan.
Exploiting weak connectivity for mobile file access. In
Fifteenth ACM Symposium on Operating Systems Princi-
ples, pages 143–155, Copper Mountain Resort, CO, De-
cember 1995.

[19] B. Noble, B. Fleis, and M. Kim. A case for Fluid Repli-
cation. In Network Storage Symposium, Seattle, WA, Oc-
tober 1999.

[20] B. D. Noble, B. Fleis, and L. P. Cox. Deferring trust in
Fluid Replication. In 9th ACM SIGOPS European Work-
shop, Kolding, Denmark, September 2000.

[21] B. D. Noble and M. Satyanarayanan. An empirical study
of a highly available file system. In 1994 ACM SIGMET-
RICS Conference on Measurement and Modeling of Com-
puter Systems, pages 138–149, Nashville, TN, May 1994.

[22] B. D. Noble, M. Satyanarayanan, G. T. Nguyen, and R. H.
Katz. Trace-based mobile network emulation. In Pro-
ceedings of the ACM SIGCOMM 97 Conference, pages
51–61, Cannes, France, September 1997.

[23] T. W. Page, Jr., R. G. Guy, J. S. Heidemann, D. H. Ratner,
P. L. Reiher, A. Goel, G. H. Kuenning, and G. J. Popek.
Perspectives on optimistically replicated, peer-to-peer fil-
ing. Software — Practice and Experience, 28(2):155–
180, February 1998.

[24] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,
and J. Zelenka. Informed prefetching and caching. In 15th
ACM Symposium on Operating Systems Principles, pages
79–95, Copper Mountain Resort, CO, December 1995.

[25] B. Pawlowski, C. Juszczak, P. Staubach, C. Smith,
D. Lebel, and D. Hitz. NFS version 3: Design and im-
plementation. In Proceedings of the Summer USENIX
Conference, pages 137–152, Boston, MA, June 1994.

[26] K. Petersen, M. J. Spreitzer, D. B. Terry, M. M. Theimer,
and A. J. Demers. Flexible update propagation for weakly
consistent replication. In Proceedings of the Sixteenth
ACM Symposium on Operating Systems Principles, pages
288–301, Saint Malo, France, October 1997.

[27] M. Satyanarayanan, J. J. Kistler, P. Kumar, M. E. Okasaki,
E. H. Siegel, and D. C. Steere. Coda: A highly avail-
able file system for a distributed workstation environ-
ment. IEEE Transactions on Computers, 39(4):447–459,
April 1990.

[28] M. Satyanarayanan, H. H. Mashburn, P. Kumar, D. C.
Steere, and J. J. Kistler. Lightweight recoverable vir-
tual memory. ACM Transactions on Computer Systems,
12(1):33–57, 1994. Corrigendum: 12(2):165–72, 1994.

[29] D. C. Steere, J. J. Kistler, and M. Satyanarayanan. Effi-
cient user-level file cache management on the Sun vnode
interface. In Proceedings of the 1990 Summer USENIX
Conference, pages 325–331, Anaheim, CA, 1990.

[30] D. B. Terry, A. J. Demers, K. Petersen, M. J. Spreitzer,
M. M. Theimer, and B. B. Welch. Session guarantees for
weakly consistent replicated data. In Proceedings of 3rd
International Conference on Parallel and Distributed In-
formation Systems, pages 140–149, Austin, TX, Septem-
ber 1994.

[31] R. Wang and T. E. Anderson. xFS: A wide area mass stor-
age file system. In Proceedings of the IEEE 4th Workshop
on Workstation Operating Systems, pages 71–78, Napa,
CA, October 1993.

[32] M. Welsh and D. Culler. Jaguar: Enabling efficient com-
munication and I/O in Java. Concurrency: Practice and
Experience, 12(7):519–538, 2000.

[33] H. Yu and A. Vahdat. Design and evaluation of a contin-
uous consistency model for replicated services. In Pro-
ceedings of the Fourth Symposium on Operating Systems
Design and Implementation, pages 75–84, San Diego,
CA, October 2000.


