
A Scalable Cloud-based Queueing Service with
Improved Consistency Levels

Han Chen, Fan Ye, Minkyong Kim, Hui Lei

IBM T.J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532
{chenhan, fanye, minkyong, hlei}@us.ibm.com

Queuing, an asynchronous messaging paradigm, is used to connect loosely
coupled components to form large-scale, highly-distributed, and fault-tolerant
applications. As cloud computing continues to gain traction, a number of vendors
currently operate cloud-based shared queuing services. These services provide
high availability and network partition tolerance with reduced consistency—at-
least once delivery (no-loss) with no effort in message order. This paper presents
the design and implementation of BlueDove Queuing Service (BDQS), a scalable
cloud-based queuing service with improved queuing consistency. BDQS provides
at-least once and best-effort in-order message delivery model, while preserving
high availability and partition tolerance. It also offers clients a flexible trade-off
between message duplication and message order. Performance evaluation shows
that BDQS achieves linear throughput scalability and offers significantly reduced
out-of-order messages compared to no-order queuing services.

BDQS consists of three main components. Cassandra, an open source dis-
tributed key-value store, provides highly available and partition tolerant persis-
tence. The queue operations component implements a queue API using Cassan-
dra API. The queue operations component stores all states in Cassandra; there-
fore, multiple instances can be deployed to maximize overall system through-
put. To enable a wide variety of clients to access the service, an HTTP REST
component provides a RESTful interface of the native queue API via HTTP
binding. In a cloud-based deployment, VM images consisting of one instance of
each component described above are deployed on an Infrastructure-as-a-service
cloud, as shown in Figure 1. A dispatching mechanism routes client requests to
a REST interface instance. To provide adequate service level, a separate moni-
toring mechanism controls the dynamic scaling of the cluster.

Messages in BDQS are distributed among all available nodes. To provide
best-effort in-order delivery, an index of message sequence is maintained for
each queue. In order to maximize system throughput and assure availability, no
distributed locks are used among the multiple queue operations instances. The
result is that, when multiple clients invoke ReceiveMessage operation on the
same queue object using different entry points into the system, the same message
may be returned to these clients. BDQS uses a collision avoidance algorithm to
balance the probability of duplication and the message delivery order. Instead of
always retrieving the first message in the index, the system retrieves a random
one among the first K messages. The larger the value of K, the less likely that
concurrent receivers will obtain the same message, but the more out-of-order

Virtual Machine
Virtual MachineVirtual Machine

HTTP REST

Infrastructure-as-a-Service

Queue
Operations

Cassandra

Java

Thrift

M
on

ito
rin

g

Dispatching

Clients

Requests

Performance Signals

Scaling Actions

Fig. 1. Deployment architecture of
BDQS on an IaaS cloud.

4.4 Consistency Level of Message Delivery

 0
 1
 2
 3

 1 2 3

Du
pl

ica
tio

n
ra

te
 (%

)

Number of receiving threads

k=1
k=2
k=3

SQS

 0
 20
 40
 60
 80

 100

 1 2 3

O
ut

-o
f-o

rd
er

 ra
te

 (%
)

Number of receiving threads

k=1
k=2
k=3

SQS

 0

 2

 4

 6

 8

 10

 1 2 3

Av
er

ag
e

di
sp

la
ce

m
en

t

Number of receiving threads

k=1
k=2
k=3

SQS

Fig. 8. By setting the value of consistency level hint (K), an application can adjust
the tradeoff between delivery order and duplication.

A series of experiments are performed to evaluate the consistency level offered
by BDQS. The following configuration parameters are used: N = 16, Q = 20,
Tsend = 3, m = 100, L = 2KB, δsend = 0, δrecv = 1 s. The number of receive
threads per queue, Trecv, is changed from 1 to 3 to generate different levels of
concurrency in ReceiveMessage operations. Three consistency level hints are
used, K = 1, 2, 3. To compare the consistency level against a no-order system,
the same workload is tested on Amazon SQS.

In all tests, the loss rate is zero, that is, no messages are lost and corrupted.
Figure 8 shows that with no concurrency (Trecv = 1), both BDQS and a no-effort
system produce negligible amount of duplication. When concurrency increases,
duplicate rate increases for BDQS. The rate of increase depends on the consis-
tency level hint—the more order is favored, the more duplicates are produced.
In a no-order system, random sampling is used to retrieve message. Therefore
the duplication rate remains low when concurrency increases.

On the other hand, BDQS produces significantly fewer out-of-order messages.
With consistency level hint K = 1, almost all messages are delivered in order,
whereas the no-order system delivers about 50% of messages out of order. Out-
of-order measures increase as K increases, but they are much smaller than those
of the no-order system. This result shows that BDQS offers client a flexible way
to specify the desired tradeoff between the two aspects of consistency—order
and duplication. In fact, the no-effort approach can be viewed as a special case
of BDQS, where K = ∞.

5 Conclusion and Future Work

Queuing is widely used as a form of connectivity to support large-scale, dis-
tributed, and fault-tolerant applications. It plays two increasingly important
roles in cloud computing. First, queueing is being offered as a shared could-
based service to applications. Second, queueing is deployed as a component of
elastic applications in PaaS environments. This paper presents the design and

(a) Duplication rate

(b) Out-of-order rate

4.4 Consistency Level of Message Delivery

 0
 1
 2
 3

 1 2 3

Du
pl

ica
tio

n
ra

te
 (%

)

Number of receiving threads

k=1
k=2
k=3

SQS

 0
 20
 40
 60
 80

 100

 1 2 3

O
ut

-o
f-o

rd
er

 ra
te

 (%
)

Number of receiving threads

k=1
k=2
k=3

SQS

 0

 2

 4

 6

 8

 10

 1 2 3

Av
er

ag
e

di
sp

la
ce

m
en

t

Number of receiving threads

k=1
k=2
k=3

SQS

Fig. 8. By setting the value of consistency level hint (K), an application can adjust
the tradeoff between delivery order and duplication.

A series of experiments are performed to evaluate the consistency level offered
by BDQS. The following configuration parameters are used: N = 16, Q = 20,
Tsend = 3, m = 100, L = 2KB, δsend = 0, δrecv = 1 s. The number of receive
threads per queue, Trecv, is changed from 1 to 3 to generate different levels of
concurrency in ReceiveMessage operations. Three consistency level hints are
used, K = 1, 2, 3. To compare the consistency level against a no-order system,
the same workload is tested on Amazon SQS.

In all tests, the loss rate is zero, that is, no messages are lost and corrupted.
Figure 8 shows that with no concurrency (Trecv = 1), both BDQS and a no-effort
system produce negligible amount of duplication. When concurrency increases,
duplicate rate increases for BDQS. The rate of increase depends on the consis-
tency level hint—the more order is favored, the more duplicates are produced.
In a no-order system, random sampling is used to retrieve message. Therefore
the duplication rate remains low when concurrency increases.

On the other hand, BDQS produces significantly fewer out-of-order messages.
With consistency level hint K = 1, almost all messages are delivered in order,
whereas the no-order system delivers about 50% of messages out of order. Out-
of-order measures increase as K increases, but they are much smaller than those
of the no-order system. This result shows that BDQS offers client a flexible way
to specify the desired tradeoff between the two aspects of consistency—order
and duplication. In fact, the no-effort approach can be viewed as a special case
of BDQS, where K = ∞.

5 Conclusion and Future Work

Queuing is widely used as a form of connectivity to support large-scale, dis-
tributed, and fault-tolerant applications. It plays two increasingly important
roles in cloud computing. First, queueing is being offered as a shared could-
based service to applications. Second, queueing is deployed as a component of
elastic applications in PaaS environments. This paper presents the design and

Fig. 2. Consistency level hint (K) controls
the tradeoff between order and duplication.

the returned message sequence will be. Thus K acts as a consistency level hint,
which the system exposes as a configurable parameter for each queue.

A prototype of BDQS has been implemented and deployed on an IaaS plat-
form. Simulation drivers are used to generate a synthetic workload to benchmark
the system’s performance. Evaluation results show that the system’s throughput
scales linearly versus the cluster size. (Details are not reported here.) To quan-
tify the improvement in consistency, we vary the number of receiver threads
per queue, Trecv, from 1 to 3 to generate different levels of concurrency in
ReceiveMessage operations. Three consistency level hints are used, K = 1, 2, 3.
To compare the consistency level against a no-order system, the same workload is
tested on Amazon SQS. Figure 2(a) shows that with no concurrency (Trecv = 1),
both BDQS and the no-order system produce negligible amount of duplication.
When concurrency increases, duplication rate increases for BDQS. The rate of
increase depends on the consistency level hint—the more order is favored, the
more duplicates are produced. In a no-order system, random sampling is used to
retrieve message. Therefore the duplication rate remains low when concurrency
increases. On the other hand, Figure 2(b) shows that BDQS produces signifi-
cantly fewer out-of-order messages. With consistency level hint K = 1, almost
all messages are delivered in order, whereas the no-order system delivers about
50% of messages out of order. Out-of-order measures increase as K increases, but
they are much smaller than those of the no-order system. This result shows that
BDQS offers client a flexible way to specify the desired tradeoff between the two
aspects of consistency—order and duplication. In fact, the no-effort approach
can be viewed as a special case of BDQS, where K = ∞.

